Microchimica Acta

, 186:142 | Cite as

Molecular beacon immobilized on graphene oxide for enzyme-free signal amplification in electrochemiluminescent determination of microRNA

  • Jiaxing Wang
  • Linlin Zhang
  • Liping LuEmail author
  • Tianfang Kang
Original Paper


An electrochemiluminescence (ECL) based biosensor is described for determination of microRNAs in the A549 cell line. Firstly, graphene oxide (GO) is dripped onto a glassy carbon electrode surface to form an interface to which one end of the capture probe (with a stem-loop structure) can be anchored through π-interaction via dangling unpaired bases. The other end of the capture probe is directed away from the GO surface to make it stand upright. Target microRNAs can open the hairpin structure to form a double-stranded DNA-RNA structure. Two auxiliary probes, generating a hybridization chain reaction, are used to elongate the DNA duplex. Finally, doxorubicin-modified cadmium telluride quantum dot nanoparticles (Dox-CdTe QD) are intercalated into the base pairs of the hybrid duplexes to act as signalling molecules. The ECL signal of the Dox-CdTe QD increases proportionally with the concentration of microRNAs, specifically for microRNA-21. The assay covers a wide linear range (1 fM to 0.1 nM), has a low detection limit for microRNA-21 (1 fM), and is selective, reproducible, and stable.

Graphical abstract

An enzyme-free amplification electrochemiluminescent assay is described to quantitative detection of microRNA in the A549 cell line. Graphene oxide was used to immobilize capture probes obviating the special modification. Doxorubicin-modified cadmium telluride quantum dot nanoparticles are intercalated into the base pairs of the hybrid duplexes to act as signalling molecules.


CdTe Doxorubicin π-stacking interaction DNA probe Hybridization chain reaction 



This work was financially supported by the National Natural Science Foundation of China (No. 21527808, 21475006) and Beijing municipal high level innovative team building program (IDHT 20180504).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3252_MOESM1_ESM.docx (504 kb)
ESM 1 (DOCX 504 kb)


  1. 1.
    Baffa R, Fassan M, Volinia S, O'Hara B, Liu CG, Palazzo JP, Gardiman M, Rugge M, Gomella LG, Croce CM, Rosenberg A (2009) MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 219(2):214–221CrossRefGoogle Scholar
  2. 2.
    Engels BM, Hutvagner G (2006) Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 25(46):6163–6169CrossRefGoogle Scholar
  3. 3.
    Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349CrossRefGoogle Scholar
  4. 4.
    Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S, Havelda Z (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32(22):e175CrossRefGoogle Scholar
  5. 5.
    Yu CY, Yin BC, Ye BC (2013) A universal real-time PCR assay for rapid quantification of microRNAs via the enhancement of base-stacking hybridization. Chem Commun 49(74):8247–8249CrossRefGoogle Scholar
  6. 6.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773CrossRefGoogle Scholar
  7. 7.
    Lu LP, Liu C, Kang TF, Miao WJ, Wang XY, Guo GS (2018) In situ enhanced electrochemiluminescence based on co-reactant self-generated for sensitive detection of microRNA. Sensors Actuators B (255):35–41Google Scholar
  8. 8.
    Jiang L, Duan DM, Shen Y, Li J (2012) Direct microRNA detection with universal tagged probe and time-resolved fluorescence technology. Biosens Bioelectron 34(1):291–295CrossRefGoogle Scholar
  9. 9.
    Fang SP, Lee HJ, Wark AW, Corn RM (2006) Attomole microarray detection of MicroRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128(43):14044–14046CrossRefGoogle Scholar
  10. 10.
    Heydari-Bafrooei E, Askari S (2017) Ultrasensitive aptasensing of lysozyme by exploiting the synergistic effect of gold nanoparticle-modified reduced graphene oxide and MWCNTs in a chitosan matrix. Microchim Acta 184:3405–3413CrossRefGoogle Scholar
  11. 11.
    Ensafi AA, Heydari-Bafrooei E, Dinari M, Mallakpour S (2014) Improved immobilization of DNA to graphite surfaces, using amino acid modified clays. J Mater Chem B 2:3022–3028CrossRefGoogle Scholar
  12. 12.
    Ensafi AA, Nasr-Esfahani P, Heydari-Bafrooei E, Rezaei B (2014) Redox targeting of DNA anchored to MWCNTs and TiO2 nanoparticles dispersed in poly dialyldimethylammonium chloride and chitosan. Colloids Surf B: Biointerfaces 121:99–105CrossRefGoogle Scholar
  13. 13.
    Heydari-Bafrooei E, Shamszadeh NS (2017) Electrochemical bioassay development for ultrasensitive aptasensing of prostate specific antigen. Biosens Bioelectron 91:284–292CrossRefGoogle Scholar
  14. 14.
    Zhang R, Chen A, Yu Y, Chai Y, Zhuo Y, Yuan R (2018) Electrochemiluminescent carbon dot-based determination of microRNA-21 by using a hemin/G-wire supramolecular nanostructure as co-reaction accelerator. Microchim Acta 185:432CrossRefGoogle Scholar
  15. 15.
    Jian Y, Wang H, Lan F, Liang L, Ren N, Liu H, Ge S, Yu J (2018) Electrochemiluminescence based detection of microRNA by applying an amplification strategy and hg(II)-triggered disassembly of a metal organic frameworks functionalized with ruthenium(II)tris(bipyridine). Microchim Acta 185:133CrossRefGoogle Scholar
  16. 16.
    Huang KJ, Liu YJ, Zhang JZ, Cao JT, Liu YM (2015) Aptamer/au nanoparticles/cobalt sulfide nanosheets biosensor for 17 beta-estradiol detection using a guanine-rich complementary DNA sequence for signal amplification. Biosens Bioelectron 67:184–191CrossRefGoogle Scholar
  17. 17.
    Zhang P, Wu XY, Chai YQ, Yuan R (2014) An electrochemiluminescent microRNA biosensor based on hybridization chain reaction coupled with hemin as the signal enhancer. Analyst 139(11):2748–2753CrossRefGoogle Scholar
  18. 18.
    Erdem A, Muti M, Mese F, Eksin E (2014) Chitosan-ionic liquid modified single-use sensor for electrochemical monitoring of sequence-selective DNA hybridization. Colloids Surf B: Biointerfaces 114:261–268CrossRefGoogle Scholar
  19. 19.
    Yang WR, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49(12):2114–2138CrossRefGoogle Scholar
  20. 20.
    Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036CrossRefGoogle Scholar
  21. 21.
    Wu M, Kempaiah R, Huang PJJ, Maheshwari V, Liu JW (2011) Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 27(6):2731–2738CrossRefGoogle Scholar
  22. 22.
    Huang R, Liao YH, Zhou XM, Xing D (2015) Toehold-mediated nonenzymatic amplification circuit on graphene oxide fluorescence switching platform for sensitive and homogeneous microRNA detection. Anal Chim Acta 888:162–172CrossRefGoogle Scholar
  23. 23.
    Agudelo D, Bourassa P, Berube G, Tajmir-Riahi HA (2014) Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: structural features and biological implications. Int J Biol Macromol 66:144–150CrossRefGoogle Scholar
  24. 24.
    Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, Moreira PI (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16(25):3267–3285CrossRefGoogle Scholar
  25. 25.
    Yang XP, Lin J, Liao XL, Zong YY, Gao HH (2015) Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method. Mater Res Bull 66:169–175CrossRefGoogle Scholar
  26. 26.
    Li CX, Wang HY, Shen J, Tang B (2015) Cyclometalated iridium complex-based label-free Photoelectrochemical biosensor for DNA detection by hybridization chain reaction amplification. Anal Chem 87(8):4283–4291CrossRefGoogle Scholar
  27. 27.
    Liu T, Chen X, Hong CY, Xu XP, Yang HH (2014) Label-free and ultrasensitive electrochemiluminescence detection of microRNA based on long-range self-assembled DNA nanostructures. Microchim Acta 181(7–8):731–736CrossRefGoogle Scholar
  28. 28.
    Brownson DAC, Munro LJ, Kampouris DK, Banks CE (2011) Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv 1(6):978–988CrossRefGoogle Scholar
  29. 29.
    Yan Z, Li Y, Zheng JB, Zhou M (2014) Electrogenerated chemiluminescence biosensing method for methyltransferase activity using tris(1, 10-phenanthroline) ruthenium-assembled graphene oxide. J Electroanal Chem 731:133–138CrossRefGoogle Scholar
  30. 30.
    Rafiee-Pour HA, Behpour M, Keshavarz M (2016) A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21. Biosens Bioelectron 77:202–207CrossRefGoogle Scholar
  31. 31.
    Azimzadeh M, Rahaie M, Nasirizadeh N, Ashtari K, Naderi-Manesh H (2016) An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens Bioelectron 77:99–106CrossRefGoogle Scholar
  32. 32.
    Xiong HT, Zheng XW (2017) Electrochemiluminescence based determination of micro-RNA using target-guided assembly of gold nanoparticles on an electrode modified with Nafion, carbon nanotubes and polyvinylpyrrolidone. Microchim Acta 184(6):1781–1789CrossRefGoogle Scholar
  33. 33.
    Zhang TT, Zhao HM, Fan GF, Li YX, Li L, Quan X (2016) Electrolytic exfoliation synthesis of boron doped graphene quantum dots: a new luminescent material for electrochemiluminescence detection of oncogene microRNA-20a. Electrochim Acta 190:1150–1158CrossRefGoogle Scholar
  34. 34.
    Park KW, Batule BS, Kang KS, Park KS, Park HG (2016) Rapid and ultrasensitive detection of microRNA by target-assisted isothermal exponential amplification coupled with poly (thymine)-templated fluorescent copper nanoparticles. Nanotechnology 27(42):425502CrossRefGoogle Scholar
  35. 35.
    Xu FZ, Luo L, Shi H, He XX, Lei YL, Tang JL, He DG, Qiao ZZ, Wang KM (2018) Label-free and sensitive microRNA detection based on a target recycling amplification-integrated superlong poly(thymine)-hosted copper nanoparticle strategy. Anal Chim Acta 1010:54–61CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Beijing on Regional Air Pollution ControlBeijing University of TechnologyBeijingChina

Personalised recommendations