Microchimica Acta

, 186:110 | Cite as

Fluorometric determination of the activity of uracil-DNA glycosylase by using graphene oxide and exonuclease I assisted signal amplification

  • Mingjian Chen
  • Wenkai Li
  • Changbei MaEmail author
  • Kefeng Wu
  • Hailun He
  • Kemin Wang
Original Paper


The base-excision repair enzyme uracil-DNA glycosylase (UDG) plays a crucial role in the maintenance of genome integrity. The authors describe a fluorometric method for the detection of the activity of UDG. It is making use of (a) a 3’-FAM-labeled hairpin DNA probe with two uracil deoxyribonucleotides in the self-complementary duplex region of its hairpin structure, (b) exonuclease I (Exo I) that catalyzes the release of FAM from the UDG-induced stretched ssDNA probe, and (c) graphene oxide that quenches the green FAM fluorescence of the intact hairpin DNA probe in the absence of UDG. If Exo I causes the release of FAM from the hairpin DNA probe, the fluorescence peaking at 517 nm is turned off in the absence of UDG but turned on in its presence. The resulting assay has a wide linear range (0.008 to 1 U·mL−1) and a detection limit as low as 0.005 U·mL−1. It has good specificity for UDG over potentially interfering enzymes and gave satisfactory results when applied to biological samples. Conceivably, the method may be used in a wide range of applications such as in diagnosis, drug screening, and in studying the repair of DNA lesions.

Graphical abstract

Schematic presentation of a fluorometric strategy for detection of the activity of uracil-DNA glycosylase by using on graphene oxide and exonuclease I assisted signal amplification.


Uracil-DNA glycosylase DNA repair Fluorescence Activity Inhibitor 



This work was supported by National Natural Science Foundation of China (No. 21205142, 31370104), State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University (2017006), The Research Innovation Program for Graduates of Central South University (2018zzts384, 2018zzts399).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3247_MOESM1_ESM.doc (396 kb)
ESM 1 (DOC 396 kb)


  1. 1.
    Lu YJ, Hu DP, Deng Q, Wang ZY, Huang BH, Fang YX, Zhang K, Wong WL (2015) Sensitive and selective detection of uracil-DNA glycosylase activity with a new pyridinium luminescent switch-on molecular probe. Analyst 140:5998–6004. CrossRefPubMedGoogle Scholar
  2. 2.
    Wu YS, Wang L, Zhu J, Jiang W (2015) A DNA machine-based fluorescence amplification strategy for sensitive detection of uracil-DNA glycosylase activity. Biosens Bioelectron 68:654–659. CrossRefPubMedGoogle Scholar
  3. 3.
    Ma Y, Zhao J, Li X, Zhang L, Zhao S (2015) A label free fluorescent assay for uracil-DNA glycosylase activity based on the signal amplification of exonuclease I. RSC Adv 5:80871–80874. CrossRefGoogle Scholar
  4. 4.
    Khusbu FY, Zhou X, Chen H, Ma C, Wang K (2018) Thioflavin T as a fluorescence probe for biosensing applications. Trends Anal Chem 109:1–18. CrossRefGoogle Scholar
  5. 5.
    Wang LJ, Ren M, Zhang QY, Tang B, Zhang CY (2017) Excision repair-initiated enzyme-assisted bicyclic cascade signal amplification for ultrasensitive detection of uracil-DNA glycosylase. Anal Chem 89:4488–4494. CrossRefPubMedGoogle Scholar
  6. 6.
    Kruman II, Schwartz E, Kruman Y, Cutler RG, Zhu X, Greig NH, Mattson MP (2004) Suppression of uracil-DNA glycosylase induces neuronal apoptosis. J Biol Chem 279:43952–43960. CrossRefPubMedGoogle Scholar
  7. 7.
    Chen L, Long Y, Liu B, Xiang D, Zhu H (2014) Real time monitoring uracil excision using uracil-containing molecular beacons. Anal Chim Acta 819:71–77. CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Li CC, Tang B, Zhang CY (2017) Homogeneously sensitive detection of multiple DNA glycosylases with intrinsically fluorescent nucleotides. Anal Chem 89:7684–7692. CrossRefPubMedGoogle Scholar
  9. 9.
    Imai K, Slupphaug G, Lee WI, Revy P, Nonoyama S, Catalan N, Yel L, Forveille M, Kavli B, Krokan HE, Ochs HD, Fischer A, Durandy A (2003) Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 4:1023–1028. CrossRefPubMedGoogle Scholar
  10. 10.
    Sousa MM, Krokan HE, Slupphaug G (2007) DNA-uracil and human pathology. Mol Asp Med 28:276–273. CrossRefGoogle Scholar
  11. 11.
    Hu D, Huang Z, Pu F, Ren J, Qu X (2011) A label-free, Quadruplex-based functional molecular beacon (LFG4-MB) for fluorescence turn-on detection of DNA and nuclease. Chem Eur J 17:1635–1641. CrossRefPubMedGoogle Scholar
  12. 12.
    Wu K, Ma C, Deng Z, Fang N, Tang Z, Zhu X, Wang K (2018) Label-free and nicking enzyme-assisted fluorescence signal amplification for RNase H analysis based on a G-quadruplexe/thioflavin T complex. 182: 142–147. doi:
  13. 13.
    Du YC, Cui YX, Li XY, Sun GY, Zhang YP, Tang AN, Kim K, Kong DM (2018) Terminal deoxynucleotidyl transferase and T7 exonuclease-aided amplification strategy for ultrasensitive detection of uracil-DNA glycosylase. Anal Chem 90:8629–8634. CrossRefPubMedGoogle Scholar
  14. 14.
    Prorok P, Alili D, Saint-Pierre C, Gasparutto D, Zharkov DO, Ishchenko AA, Tudek B, Saparbaev MK (2015) Uracil in duplex DNA is a substrate for the nucleotide incision repair pathway in human cells. Proceedings Natl. Acad Sci U S A 110:3695–3703. CrossRefGoogle Scholar
  15. 15.
    Liu X, Chen M, Hou T, Wang X, Liu S, Li F (2013) A novel electrochemical biosensor for label-free detection of uracil DNA glycosylase activity based on enzyme-catalyzed removal of uracil bases inducing strand release. Electrochim Acta 113:514–518. CrossRefGoogle Scholar
  16. 16.
    Jiao F, Qian P, Qin Y, Xia Y, Deng C, Nie Z (2016) A novel and label-free biosensors for uracil-DNA glycosylase activity based on the electrochemical oxidation of guanine bases at the graphene modified electrode. Talanta 147:98–102. CrossRefPubMedGoogle Scholar
  17. 17.
    Nie H, Wang W, Li W, Nie Z, Yao S (2015) A colorimetric and smartphone readable method for uracil-DNA glycosylase detection based on the target-triggered formation of G-quadruplex. Analyst 140:2771–2777. CrossRefPubMedGoogle Scholar
  18. 18.
    Nguyen V, Le D, Nie C, Zhou D, Wang Y, Tang L, Jiang J, Yu R (2012) Enzyme-catalyzed assembly of gold nanoparticles for visualized screening of DNA base excision repair. Talanta 100:303–307. CrossRefPubMedGoogle Scholar
  19. 19.
    Tao J, Song PS, Sato Y, Nishizawa S, Teramae N, Tong A, Yu Xiang Y (2015) A label-free and sensitive fluorescent method for the detection of uracil-DNA glycosylase activity. Chem Commun 51:929–932. CrossRefGoogle Scholar
  20. 20.
    Liu XJ, Che MQ, Hou T, Wang XZ, Liu SF, Li F (2014) Label-free colorimetric assay for base excision repair enzyme activity based on nicking enzyme assisted signal amplification. Biosens Bioelectron 54:598–602. CrossRefPubMedGoogle Scholar
  21. 21.
    Ma CB, Wu KF, Liu HS, Xia K, Wang KM, Wang J (2016) Label-free fluorescence turn-on detection of uracil DNA glycosylase activity based on G-quadruplex formation. Talanta 160:449–453. CrossRefPubMedGoogle Scholar
  22. 22.
    Ahn JK, Lee CY, Park KS, Park HG (2018) Abasic site-assisted inhibition of nicking endonuclease activity for the sensitive determination of uracil DNA glycosylase. Biotechnol J 13:170603. CrossRefGoogle Scholar
  23. 23.
    Wu YS, Wang L, Jiang W (2017) Toehold-mediated strand displacement reaction-dependent fluorescent strategy for sensitive detection of uracil-DNA glycosylase activity. Biosens Bioelectron 89:984–988. CrossRefPubMedGoogle Scholar
  24. 24.
    Wu YS, Yan P, Xu XW, Jiang W A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities. Analyst 141:1789–1795.
  25. 25.
    Liu DK, Lu X, Yang YW, Zhai YY, Zhang J, Li L (2018) A novel fluorescent aptasensor for the highly sensitive and selective detection of cardiac troponin I based on a graphene oxide platform. Anal Bioanal Chem 410:4285–4291. CrossRefPubMedGoogle Scholar
  26. 26.
    Xiao KY, Liu J, Chen H, Zhang S, Kong JL (2017) A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification. Biosens Bioelectron 91:76–81. CrossRefPubMedGoogle Scholar
  27. 27.
    Li MK, Hu LY, Niu CG, Huang DW, Zeng GM (2018) A fluorescent DNA based probe for hg(II) based on thymine-hg(II)-thymine interaction and enrichment via magnetized graphene oxide. Microchim Acta 185:207. CrossRefGoogle Scholar
  28. 28.
    Ma CB, Wu KF, Zhao H, Liu HS, Wang KM, Xia K (2018) Fluorometric aptamer-based determination of ochratoxin a based on the use of graphene oxide and RNase H-aided amplification. Microchim Acta 185:347. CrossRefGoogle Scholar
  29. 29.
    Zhang H, Zhang H, Aldalbahi A, Zuo XL, Fan CH, Mi XQ (2017) Fluorescent biosensors enabled by graphene and graphene oxide. Biosens Bioelectron 89:96–106. CrossRefPubMedGoogle Scholar
  30. 30.
    Li CH, Xiao X, Tao J, Wang DM, Huang CZ, Zhen SJ (2017) A graphene oxide-based strand displacement amplification platform for ricin detection using aptamer as recognition element. Biosens Bioelectron 91:149–154. CrossRefPubMedGoogle Scholar
  31. 31.
    Chen J, Ge J, Zhang L, Li ZH, Li JJ, Sun YJ, Qu LB (2016) Reduced graphene oxide nanosheets functionalized with poly (styrene sulfonate) as a peroxidase mimetic in a colorimetric assay for ascorbic acid. Microchim Acta 183:1847–1853. CrossRefGoogle Scholar
  32. 32.
    Wu KF, Ma C, Zhao H, Chen M, Deng Z (2019) Sensitive aptamer-based fluorescene assay for ochratoxin a based on RNase H signal amplification. Food Chem 277:273–278. CrossRefPubMedGoogle Scholar
  33. 33.
    Sun Y, Peng P, Guo R, Wang H, Li T (2018) Exonuclease III-boosted cascade reactions for ultrasensitive SERS detection of nucleic acids. Biosens Bioelectron 104:32–38. CrossRefPubMedGoogle Scholar
  34. 34.
    Wu T, Yang Y, Chen W, Wang J, Yang Z, Wang S, Xiao X, Li M, Zhao M (2018) Noncanonical substrate preference of lambda exonuclease for 5′-nonphosphate-ended dsDNA and a mismatch-induced acceleration effect on the enzymatic reaction. Nucleic Acids Res 46:3119–3129. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dong JJ, Lian JY, Jin Y, Baoxin Li BX (2017) Guanine-based chemiluminescence resonance energy transfer biosensing platform for the specific assay of uracil-DNA glycosylase activity. Anal Methods 9:276–281. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Mingjian Chen
    • 1
  • Wenkai Li
    • 1
  • Changbei Ma
    • 1
    • 2
    Email author
  • Kefeng Wu
    • 1
  • Hailun He
    • 1
  • Kemin Wang
    • 2
  1. 1.School of Life SciencesCentral South UniversityChangshaChina
  2. 2.State Key Laboratory of Chemo/Biosensing and ChemometricsHunan UniversityChangshaChina

Personalised recommendations