Advertisement

Microchimica Acta

, 186:134 | Cite as

Electrochemical dopamine sensor based on the use of a thermosensitive polymer and an nanocomposite prepared from multiwalled carbon nanotubes and graphene oxide

  • Pengcheng Zhao
  • Chao Chen
  • Meijun Ni
  • Longqi Peng
  • Chunyan Li
  • Yixi XieEmail author
  • Junjie FeiEmail author
Original Paper
  • 25 Downloads

Abstract

An electrochemical dopamine sensor with a temperature-controlled switch was constructed by using a mixture of thermo-sensitive block copolymers (type tBA-PDEA-tBA), graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs). If the temperature is below 26 °C, the polymer on the glassy carbon electrode (GCE) is stretched, the distance between the MWCNTs is large, and the charge transfer resistance (Rct) of the composite also is large. In the presence of dopamine, the electron transfer at the electrode is strongly retarded and in the “off” state. At above 38 °C, the polymer is shrunk and the Rct is much smaller. The presence of dopamine results in a rapid electron transfer at the GCE, and this is referred to as the “on” state. At temperatures between 26 and 38 °C, the polymer shrinks slightly and has a “spring-like” state. There is a linear relationship between the response current (typically measured at a potential as low as 0.16 V vs. Ag/AgCl) and temperature. The response to dopamine is linear in the 0.06 to 4.2 μM and 4.2 to 18.2 μM concentration range, and the detection limit is 42 nM. Conceivably, this approach provides a novel approach towards the design of electrochemical sensors based on the use of thermo-sensitive polymers.

Graphical abstract

Schematic presentation of reversible and temperature-controlled electrochemical response of dopamine on the thermo-sensitive block copolymers (tBA-PDEA-tBA) / multi-walled carbon nanotubes (MWCNTs) / graphene oxide (GO) / glassy carbon electrode (GCE).

Keywords

N,N-Diethylacrylamide Tert-butyl acrylate Electrochemical “on/off” detection Stimulus-responsive polymer Spring-like sensor Carbon nanomaterials 

Notes

Acknowledgments

This research was financially supported by the NSF of China (Grants No. 21874114, 21475114, 21775133 and 31701613), the project of innovation team of the ministry of education (IRT_17R90), the Project of Science and Technology Plan of Hunan Province (2017XK2055), Hunan Provincial Innovation Foundation for Postgraduate (CX2018B364).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3238_MOESM1_ESM.docx (2.2 mb)
ESM 1 (DOCX 2.24 MB)

References

  1. 1.
    Zi-Quan C, Guo-Jie W (2016) Multi-stimuli-responsive polymer materials: particles, films, and bulk gels. Chem Rec 16(3):1398–1435CrossRefGoogle Scholar
  2. 2.
    Brun MJ, Gomez EJ, Suh J (2017) Stimulus-responsive viral vectors for controlled delivery of therapeutics. J Control Release 267:80–89CrossRefGoogle Scholar
  3. 3.
    Gambinossi F, Defnet E, Ferri JK, Mylon SE (2015) Aggregation kinetics of stimulus-responsive polymer-coated gold nanoparticles driven by Hofmeister effects. Colloid Interf Sci Commun 9:9–11CrossRefGoogle Scholar
  4. 4.
    Blum AP, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC (2015) Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc 137(6):2140–2154CrossRefGoogle Scholar
  5. 5.
    Pengbo W, Xiaodong C (2014) Stimuli-responsive supramolecular interfaces for controllable Bioelectrocatalysis. ChemElectroChem 1(10):1602–1612CrossRefGoogle Scholar
  6. 6.
    Mishra S, Ashaduzzaman M, Mishra P, Swart HC, Turner APF, Tiwari A (2017) Stimuli-enabled zipper-like graphene interface for auto-switchable bioelectronics. Biosens Bioelectron 89:305–311CrossRefGoogle Scholar
  7. 7.
    Evgeny K (2016) Modified electrodes and electrochemical systems switchable by temperature changes. Electroanalysis 28(9):1916–1929CrossRefGoogle Scholar
  8. 8.
    Fuan W, Xiaoqing L, Itamar W (2013) Integration of Photoswitchable proteins, photosynthetic reaction centers and semiconductor/biomolecule hybrids with electrode supports for Optobioelectronic applications. Adv Mater 25(3):349–377CrossRefGoogle Scholar
  9. 9.
    Yang T, Fu J, Zheng S, Yao H, Jin Y, Lu Y, Liu H (2018) Biomolecular logic devices based on stimuli-responsive PNIPAM-DNA film electrodes and bioelectrocatalysis of natural DNA with Ru(bpy)32+ as mediator. Biosens Bioelectron 108:62–68CrossRefGoogle Scholar
  10. 10.
    Khan MS, Misra SK, Dighe K, Wang Z, Schwartz-Duval AS, Sar D, Pan D (2018) Electrically-receptive and thermally-responsive paper-based sensor chip for rapid detection of bacterial cells. Biosens Bioelectron 110:132–140CrossRefGoogle Scholar
  11. 11.
    Zhou Y, Chen C, Zhao J, Fei J, Ding Y, Cai Y (2016) Reversible switched detection of Dihydroxybenzenes using a temperature-sensitive electrochemical sensing film. Electrochim Acta 192:158–166CrossRefGoogle Scholar
  12. 12.
    Zhou Y, Cao J, Zhao J, Xie Y, Fei J, Cai Y (2016) Temperature-responsive amperometric H2O2 biosensor using a composite film consisting of poly(N-isopropylacrylamide)-b-poly (2-acrylamidoethyl benzoate), graphene oxide and hemoglobin. Microchim Acta 183(9):2501–2508CrossRefGoogle Scholar
  13. 13.
    Chen C, Zhang M, Li C, Xie Y, Fei J (2018) Switched voltammetric determination of ractopamine by using a temperature-responsive sensing film. Microchim Acta 185(2):155CrossRefGoogle Scholar
  14. 14.
    Idziak I, Avoce D, Lessard D, Gravel D, Zhu XX (1999) Thermosensitivity of aqueous solutions of poly(N,N-diethylacrylamide). Macromolecules 32(4):1260–1263CrossRefGoogle Scholar
  15. 15.
    Pan Z-Q, Xie J, Liu X-J, Bao N, Gu H-Y (2014) Direct electron transfer from native human hemoglobin using a glassy carbon electrode modified with chitosan and a poly(N,N-diethylacrylamide) hydrogel containing red blood cells. Microchim Acta 181(11):1215–1221CrossRefGoogle Scholar
  16. 16.
    Yao H, Lin L, Wang P, Liu H (2014) Thermo- and sulfate-controllable Bioelectrocatalysis of glucose based on horseradish peroxidase and glucose oxidase embedded in poly(N,N-diethylacrylamide) hydrogel films. Appl Biochem Biotechnol 173(8):2005–2018CrossRefGoogle Scholar
  17. 17.
    Zhang K, Liang Y, Liu D, Liu H (2012) An on–off biosensor based on multistimuli-responsive polymer films with a binary architecture and bioelectrocatalysis. Sensors Actuators B Chem 173:367–376CrossRefGoogle Scholar
  18. 18.
    Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027–6053CrossRefGoogle Scholar
  19. 19.
    Wei P, Gan T, Wu K (2018) N-methyl-2-pyrrolidone exfoliated graphene as highly sensitive analytical platform for carbendazim. Sensors Actuators B Chem 274:551–559CrossRefGoogle Scholar
  20. 20.
    Hao J, Ji L, Wu K, Yang N (2018) Electrochemistry of ZnO@reduced graphene oxides. Carbon 130:480–486CrossRefGoogle Scholar
  21. 21.
    Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49(8):2581–2602CrossRefGoogle Scholar
  22. 22.
    Di Tocco A, Robledo SN, Osuna Y, Sandoval-Cortez J, Granero AM, Vettorazzi NR, Martínez JL, Segura EP, Iliná A, Zon MA, Arévalo FJ, Fernández H (2018) Development of an electrochemical biosensor for the determination of triglycerides in serum samples based on a lipase/magnetite-chitosan/copper oxide nanoparticles/multiwalled carbon nanotubes/pectin composite. Talanta 190:30–37CrossRefGoogle Scholar
  23. 23.
    Shukla SK, Lavon A, Shmulevich O, Ben-Yoav H (2018) The effect of loading carbon nanotubes onto chitosan films on electrochemical dopamine sensing in the presence of biological interference. Talanta 181:57–64CrossRefGoogle Scholar
  24. 24.
    Yuan Q, Liu Y, Ye C, Sun H, Dai D, Wei Q, Lai G, Wu T, Yu A, Fu L, Chee KWA, Lin C-T (2018) Highly stable and regenerative graphene–diamond hybrid electrochemical biosensor for fouling target dopamine detection. Biosens Bioelectron 111:117–123CrossRefGoogle Scholar
  25. 25.
    Vulcu A, Biris AR, Borodi G, Berghian-Grosan C (2018) Interference of ascorbic and uric acids on dopamine behavior at graphene composite surface: an electrochemical, spectroscopic and theoretical approach. Electrochim Acta 282:822–834CrossRefGoogle Scholar
  26. 26.
    Khan MZH, Liu X, Tang Y, Zhu J, Hu W, Liu X (2018) A glassy carbon electrode modified with a composite consisting of gold nanoparticle, reduced graphene oxide and poly(L-arginine) for simultaneous voltammetric determination of dopamine, serotonin and L-tryptophan. Microchim Acta 185(9):439CrossRefGoogle Scholar
  27. 27.
    Tang J, Jiang S, Liu Y, Zheng S, Bai L, Guo J, Wang J (2018) Electrochemical determination of dopamine and uric acid using a glassy carbon electrode modified with a composite consisting of a co(II)-based metalorganic framework (ZIF-67) and graphene oxide. Microchim Acta 185(10):486CrossRefGoogle Scholar
  28. 28.
    Li Y, Jiang Y, Song Y, Li Y, Li S (2018) Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using a gold electrode modified with carboxylated graphene and silver nanocube functionalized polydopamine nanospheres. Microchim Acta 185(8):382CrossRefGoogle Scholar
  29. 29.
    Bian F, Liu M (2003) Complexation between poly(N,N-diethylacrylamide) and poly(acrylic acid) in aqueous solution. Eur Polym J 39(9):1867–1874CrossRefGoogle Scholar
  30. 30.
    Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130(18):5856–5857CrossRefGoogle Scholar
  31. 31.
    Xie Z, Lu W, Yang L, Li G, Ye B (2017) A voltammetry sensor platform for baicalein and baicalin simultaneous detection in vivo based on Ta2O5-Nb2O5@CTS composite. Talanta 170:358–368CrossRefGoogle Scholar
  32. 32.
    Divagar M, Sriramprabha R, Ponpandian N, Viswanathan C (2018) Highly selective and sensitive electrochemical detection of dopamine with hydrothermally prepared β-MnO2 nanostructures. Mater Sci Semicond Process 83:216–223CrossRefGoogle Scholar
  33. 33.
    A. G, A. G, M. L. P (2015) Electrochemical sensor for the quantification of dopamine using glassy carbon electrodes modified with Single-Wall carbon nanotubes covalently functionalized with Polylysine. Electroanalysis 27(7):1565–1571CrossRefGoogle Scholar
  34. 34.
    Fang J-J, Yang N-N, Gao E-Q (2018) Making metal–organic frameworks electron-deficient for ultrasensitive electrochemical detection of dopamine. Electrochem Commun 89:32–37CrossRefGoogle Scholar
  35. 35.
    Yang Z, Liu X, Zheng X, Zheng J (2018) Synthesis of au@Pt nanoflowers supported on graphene oxide for enhanced electrochemical sensing of dopamine. J Electroanal Chem 817:48–54CrossRefGoogle Scholar
  36. 36.
    Zou HL, Li BL, Luo HQ, Li NB (2015) A novel electrochemical biosensor based on hemin functionalized graphene oxide sheets for simultaneous determination of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 207:535–541CrossRefGoogle Scholar
  37. 37.
    Zhang B, Huang D, Xu X, Alemu G, Zhang Y, Zhan F, Shen Y, Wang M (2013) Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid with helical carbon nanotubes. Electrochim Acta 91:261–266CrossRefGoogle Scholar
  38. 38.
    Kim D, Lee S, Piao Y (2017) Electrochemical determination of dopamine and acetaminophen using activated graphene-Nafion modified glassy carbon electrode. J Electroanal Chem 794:221–228CrossRefGoogle Scholar
  39. 39.
    Jiao J, Zuo J, Pang H, Tan L, Chen T, Ma H (2018) A dopamine electrochemical sensor based on Pd-Pt alloy nanoparticles decorated polyoxometalate and multiwalled carbon nanotubes. J Electroanal Chem 827:103–111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of ChemistryXiangtan UniversityXiangtanPeople’s Republic of China
  2. 2.Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of ChemistryXiangtan UniversityXiangtanPeople’s Republic of China
  3. 3.Hunan Institute of Advanced Sensing and Information TechnologyXiangtan UniversityXiangtanPeople’s Republic of China

Personalised recommendations