Microchimica Acta

, 186:106 | Cite as

White-light emissive upconversion nanoparticles for visual and colorimetric determination of the pesticide thiram

  • Huaijing Sun
  • Qingsong MeiEmail author
  • Swati Shikha
  • Jinliang Liu
  • Jing ZhangEmail author
  • Yong ZhangEmail author
Original Paper


The authors describe the use of white-light emitting upconversion nanoparticles (WL-UCNPs) for visual detection of the pesticide thiram. The method is demonstrated to undergo a better discernable color change upon target binding. The WL-UCNPs are modified with the lead(II)-dithizone complex which acts as the energy acceptor and recognition unit. This leads to quenching of the blue (475 nm) and green (545 nm) emissions of the WL-UCNPs, while the red emission (650 nm) remains unaffected. Upon addition of thiram, the quenched emissions are recovered, with a linear signal increase in the range from 2 nM to 20 nM of thiram and a limit of detection of 0.26 nM. The nanoprobe was further integrated into a test paper for visual detection. The concentration-dependent color change that varies from red to cyan and bluish violet and then to white can be visually distinguished.

Graphical abstract

Schematic presentation of a white-light emissive upconversion nanoparticle based test paper for color-discernable detection of the pesticide thiram. The test stripe exhibits a concentration-dependent color variation spanning from red, cyan, to bluish violet, and at last to white.


Upconversional nanoprobe Lead-dithizone complex Energy transfer Test paper Color-differentiation 



The work was supported by National Natural Science Foundation of China (31671011), and grants from the Ministry of Education of Singapore (MOE2016-T3-1-004, R-397-000-270-114).

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2019_3231_MOESM1_ESM.docx (3.7 mb)
ESM 1 (DOCX 3.66 mb)


  1. 1.
    Wang S-L, Zhong L, Song Q-H (2017) A ratiometric fluorescent chemosensor for selective and visual detection of phosgene in solutions and in the gas phase. Chem Commun 53(9):1530–1533CrossRefGoogle Scholar
  2. 2.
    Qiu Z, Shu J, Tang D (2017) Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper. Anal Chem 89(9):5152–5160CrossRefGoogle Scholar
  3. 3.
    Cao H, Wang H, Huang Y, Sun Y, Shi S, Tang M (2017) Quantification of gold (III) in solution and with a test stripe via the quenching of the fluorescence of molybdenum disulfide quantum dots. Microchim Acta 184(1):91–100CrossRefGoogle Scholar
  4. 4.
    Wei Y, Deng X, Xie Z, Cai X, Liang S, Ma P, Hou Z, Cheng Z, Lin J (2017) Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling–shrinking strategy toward superior water resistance. Adv Funct Mater 27(39):1703535CrossRefGoogle Scholar
  5. 5.
    Zhu H, Zhang H, Xia Y (2018) Planar is better: monodisperse three-layered MoS2 quantum dots as fluorescent reporters for 2, 4, 6-trinitrotoluene sensing in environmental water and luggage cases. Anal Chem 90(6):3942–3949CrossRefGoogle Scholar
  6. 6.
    Mei Q, Jing H, Li Y, Yisibashaer W, Chen J, Li BN, Zhang Y (2016) Smartphone based visual and quantitative assays on upconversional paper sensor. Biosens Bioelectron 75:427–432CrossRefGoogle Scholar
  7. 7.
    He M, Li Z, Ge Y, Liu Z (2016) Portable upconversion nanoparticles-based paper device for field testing of drug abuse. Anal Chem 88(3):1530–1534CrossRefGoogle Scholar
  8. 8.
    Yang M, Zhang Y, Cui M, Tian Y, Zhang S, Peng K, Xu H, Liao Z, Wang H, Chang J (2018) A smartphone-based quantitative detection platform of mycotoxins based on multiple-color upconversion nanoparticles. Nanoscale 10(33):15865–15874CrossRefGoogle Scholar
  9. 9.
    Hu J, Wang SQ, Wang L, Li F, Pingguan-Murphy B, Lu TJ, Xu F (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597CrossRefGoogle Scholar
  10. 10.
    Farka Z, Mickert MJ, Hlavacek A, Skladal P, Gorris HH (2017) Single molecule Upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers. Anal Chem 89(21):11825–11830CrossRefGoogle Scholar
  11. 11.
    Butwong N, Kunthadong P, Soisungnoen P, Chotichayapong C, Srijaranai S, Luong JH (2018) Silver-doped CdS quantum dots incorporated into chitosan-coated cellulose as a colorimetric paper test stripe for mercury. Microchim Acta 185(2):126CrossRefGoogle Scholar
  12. 12.
    Zhou YJ, Huang XY, Liu C, Zhang RL, Gu XL, Guan GJ, Jiang CL, Zhang LY, Du SH, Liu BH, Han MY, Zhang ZP (2016) Color-multiplexing-based fluorescent test paper: dosage-sensitive visualization of arsenic (III) with discernable scale as low as 5 ppb. Anal Chem 88(12):6105–6109CrossRefGoogle Scholar
  13. 13.
    Wang Z, Yuan F, Li X, Li Y, Zhong H, Fan L, Yang S (2017) 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv Mater 29(37):1702910CrossRefGoogle Scholar
  14. 14.
    Xuan T, Yang X, Lou S, Huang J, Liu Y, Yu J, Li H, Wong K-L, Wang C, Wang J (2017) Highly stable CsPbBr 3 quantum dots coated with alkyl phosphate for white light-emitting diodes. Nanoscale 9(40):15286–15290CrossRefGoogle Scholar
  15. 15.
    Yang QY, Lehn JM (2014) Bright white-light emission from a single organic compound in the solid state. Angew Chem Int Ed 53(18):4572–4577CrossRefGoogle Scholar
  16. 16.
    Sapra S, Mayilo S, Klar TA, Rogach AL, Feldmann J (2007) Bright white-light emission from semiconductor nanocrystals: by chance and by design. Adv Mater 19(4):569–572CrossRefGoogle Scholar
  17. 17.
    Ning C-Z, Dou L, Yang P (2017) Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat Rev Mater 2(12):17070CrossRefGoogle Scholar
  18. 18.
    Shikha S, Salafi T, Cheng JT, Zhang Y (2017) Versatile design and synthesis of nano-barcodes. Chem Soc Rev 46(22):7054–7093CrossRefGoogle Scholar
  19. 19.
    Gai S, Li C, Yang P, Lin J (2014) Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114(4):2343–2389CrossRefGoogle Scholar
  20. 20.
    Zhou B, Tao L, Chai Y, Lau SP, Zhang Q, Tsang YH (2016) Constructing interfacial energy transfer for photon up- and Down-conversion from lanthanides in a Core-Shell nanostructure. Angew Chem Int Ed Engl. 55(40):12356–12360CrossRefGoogle Scholar
  21. 21.
    Tao L, Yan L, Lou Y, Li Y, Zhao Y, Zhou B, Li J (2018) Bright white-light upconversion from core-shell nanocrystals through interfacial energy transfer. Dyes Pigments 154:87–91CrossRefGoogle Scholar
  22. 22.
    Zhang C, Yang L, Zhao J, Liu B, Han MY, Zhang Z (2015) White-light emission from an integrated Upconversion nanostructure: toward multicolor displays modulated by laser power. Angew Chem Int Ed Engl 54(39):11531–11535CrossRefGoogle Scholar
  23. 23.
    Li XM, Shen DK, Yang JP, Yao C, Che RC, Zhang F, Zhao DY (2013) Successive layer-by-layer strategy for multi-Shell epitaxial growth: Shell thickness and doping position dependence in Upconverting optical properties. Chem Mater 25(1):106–112CrossRefGoogle Scholar
  24. 24.
    Mei QS, Deng W, Yisibashaer W, Jing HR, Du GQ, Wu M, Li BN, Zhang Y (2015) Zinc-Dithizone complex engineered Upconverting nanosensors for the detection of hypochlorite in living cells. Small 11(35):4568–4575CrossRefGoogle Scholar
  25. 25.
    Zaporozhets O, Petruniock N, Sukhan V (1999) Determination of ag (I), hg (II) and Pb (II) by using silica gel loaded with dithizone and zinc dithizonate. Talanta 50(4):865–873CrossRefGoogle Scholar
  26. 26.
    Zhang K, Mei Q, Guan G, Liu B, Wang S, Zhang Z (2010) Ligand replacement-induced fluorescence switch of quantum dots for ultrasensitive detection of organophosphorothioate pesticides. Anal Chem 82(22):9579–9586CrossRefGoogle Scholar
  27. 27.
    Su Q, Han S, Xie X, Zhu H, Chen H, Chen CK, Liu RS, Chen X, Wang F, Liu X (2012) The effect of surface coating on energy migration-mediated upconversion. J Am Chem Soc 134(51):20849–20857CrossRefGoogle Scholar
  28. 28.
    Sedghi R, Kazemi S, Heidari B (2017) Novel selective and sensitive dual colorimetric sensor for mercury and lead ions derived from dithizone-polymeric nanocomposite hybrid. Sensors Actuators B Chem 245:860–867CrossRefGoogle Scholar
  29. 29.
    Shahat A, Ali E, El Shahat M (2015) Colorimetric determination of some toxic metal ions in post-mortem biological samples. Sensors Actuators B Chem 221:1027–1034CrossRefGoogle Scholar
  30. 30.
    Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914CrossRefGoogle Scholar
  31. 31.
    Maximiano EM, de Lima F, Cardoso CA, Arruda GJ (2018) Modification of carbon paste electrodes with recrystallized zeolite for simultaneous quantification of thiram and carbendazim in food samples and an agricultural formulation. Electrochim Acta 259:66–76CrossRefGoogle Scholar
  32. 32.
    Walia S, Sharma RK, Parmar BS (2009) Isolation and simultaneous LC analysis of thiram and its less toxic transformation product in DS formulation. Bull Environ Contam Toxicol 83(3):363–368CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Zhao J, Sun X, Pan W, Yu G, Wang J (2018) Fluorescent carbon dots for probing the effect of thiram on the membrane of fungal cell and its quantitative detection in aqueous solution. Sensors Actuators B Chem 273:1833–1842CrossRefGoogle Scholar
  34. 34.
    Chen M, Luo W, Liu Q, Hao N, Zhu Y, Liu M, Wang L, Yang H, Chen X (2018) Simultaneous in situ extraction and fabrication of surface-enhanced Raman scattering substrate for reliable detection of Thiram residue. Anal Chem 90(22):13647–13654CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
  2. 2.Department of Biomedical Engineering, Faculty of EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations