Microchimica Acta

, 186:93 | Cite as

Simultaneous fluorometric determination of the DNAs of Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus by using an ultrathin metal-organic framework (type Cu-TCPP)

  • Qiming Qiu
  • Huayun Chen
  • Shengna Ying
  • Sumaira Sharif
  • Zhiheng You
  • Yixian WangEmail author
  • Yibin Ying
Original Paper


Ultrathin (<10 nm) nanosheets of a metal-organic framework (MOF-NSs) were prepared in high-yield and scalable production by a surfactant-assisted one-step method. The MOF-NSs possess distinguished affinity for ssDNA but not for dsDNA. This causes the fluorescence of the labeled DNA to be quenched. On binding to the target DNA (shown here for Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus), the labeled duplex is released and the fluorescence of the label is restored. The labels Texas Red, Cy3 and FAM were used and give red, red or green fluorescence depending on the kind of pathogen. The detection limits are 28 pM, 35 pM and 15 pM for the gene segments of Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus, respectively.

Graphical abstract

Schematic of an ultrasensitive fluorescent biosensor for multiplex detection of pathogenic DNAs based on ultrathin MOF nanosheets (type Cu-TCPP).


Two dimensional nanomaterials Surfactant-assisted synthesis FRET Pathogens Fluorescence sensor Multiplex detection 



The authors are grateful for financial support from National Key Research and Development Program of China (No. 2017YFC1601700) and National Natural Science Foundation of China (No. 31401568).

Compliance with ethical standards

The author declare that they have no competing interests.

Supplementary material

604_2019_3226_MOESM1_ESM.pdf (664 kb)
ESM 1 (PDF 663 kb)


  1. 1.
    Du Y, Li BL, Wang E (2013) "fitting" makes "sensing" simple: label-free detection strategies based on nucleic acid aptamers. Acc Chem Res 46:203–213CrossRefGoogle Scholar
  2. 2.
    Jung C, Ellington AD (2014) Diagnostic applications applications of nucleic acid circuits. Acc Chem Res 47:1825–1835CrossRefGoogle Scholar
  3. 3.
    Zhao YX, Chen F, Li Q, Wang LH, Fan CH (2015) Isothermal amplification of nucleic acids. Chem Rev 115:12491–12545CrossRefGoogle Scholar
  4. 4.
    Kong C, Wang Y, Fodjo EK, Yang GX, Han F, Shen XS (2017) Loop-mediated isothermal amplification for visual detection of Vibrio parahaemolyticus using gold nanoparticles. Microchim Acta 185:35–41CrossRefGoogle Scholar
  5. 5.
    Li HH, Zhang YW, Luo YL, Sun XP (2011) Nano-C-60: a novel, effective, fluorescent sensing platform for biomolecular detection. Small 7:1562–1568CrossRefGoogle Scholar
  6. 6.
    Wang XL, Niazi S, Yukun H, Sun WJ, Wu SJ, Duan N, Hun X, Wang ZP (2017) Homogeneous time-resolved FRET assay for the detection of Salmonella typhimurium using aptamer-modified NaYF4:Ce/Tb nanoparticles and a fluorescent DNA label. Microchim Acta 184:4021–4027CrossRefGoogle Scholar
  7. 7.
    Liu KY, Yan X, Mao BY, Wang S, Deng L (2016) Aptamer-based detection of Salmonella enteritidis using double signal amplification by Klenow fragment and dual fluorescence. Microchim Acta 183:643–649CrossRefGoogle Scholar
  8. 8.
    Chinnappan R, AlAmer S, Eissa S, Rahamn AA, Abu Salah KM, Zourob M (2017) Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer. Microchim Acta 185:61–69CrossRefGoogle Scholar
  9. 9.
    He QZ, Luo HQ, Tang L, Liu J, Chen KK, Zhang QF, Ning Y (2017) Nanographite-based fluorescent biosensing of Salmonella enteritidis by applying deoxyribonuclease-assisted recycling. Microchim Acta 184:3875–3882CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Zheng B, Zhu CF, Zhang X, Tan CL, Li H, Chen B, Yang J, Chen JZ, Huang Y, Wang LH, Zhang H (2015) Single-layer transition metal dichalcogenide nanosheet based nanosensors for rapid, sensitive, and multiplexed detection of DNA. Adv Mater 27:935–939CrossRefGoogle Scholar
  11. 11.
    Yuan YX, Wu SF, Shu F, Liu ZH (2014) An MnO2 nanosheet as a label-free nanoplatform for homogeneous biosensing. Chem Commun 50:1095–1097CrossRefGoogle Scholar
  12. 12.
    Lin Y, Williams TV, Connell JW (2010) Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett 1:277–283CrossRefGoogle Scholar
  13. 13.
    Wang QB, Wang W, Lei JP, Xu N, Gao FL, Ju HX (2013) Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal Chem 85:12182–12188CrossRefGoogle Scholar
  14. 14.
    Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787CrossRefGoogle Scholar
  15. 15.
    Zhu CF, Zeng ZY, Li H, Li F, Fan CH, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998–6001CrossRefGoogle Scholar
  16. 16.
    Li H, Eddaoudi M, O'Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279CrossRefGoogle Scholar
  17. 17.
    Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674CrossRefGoogle Scholar
  18. 18.
    Wu YF, Han JY, Xue P, Xu R, Kang YJ (2015) Nano metal-organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Nanoscale 7:1753–1759CrossRefGoogle Scholar
  19. 19.
    Zhang HT, Zhang JW, Huang G, Du ZY, Jiang HL (2014) An amine-functionalized metal-organic framework as a sensing platform for DNA detection. Chem Commun 50:12069–12072CrossRefGoogle Scholar
  20. 20.
    Liu TZ, Hu R, Zhang X, Zhang KL, Liu Y, Zhang XB, Bai RY, Li D, Yang YH (2016) Metal-organic framework nanomaterials as novel signal probes for electron transfer mediated ultrasensitive electrochemical immunoassay. Anal Chem 88:12516–12523CrossRefGoogle Scholar
  21. 21.
    Shen WJ, Zhuo Y, Chai YQ, Yuan R (2015) Cu-based metal-organic frameworks as a catalyst to construct a ratiometric electrochemical aptasensor for sensitive lipopolysaccharide detection. Anal Chem 87:11345–11352CrossRefGoogle Scholar
  22. 22.
    Xiong CY, Wang HJ, Liang WB, Yuan YL, Yuan R, Chai YQ (2015) Luminescence-functionalized metal-organic frameworks based on a ruthenium(II) complex: a signal amplification strategy for electrogenerated chemiluminescence immunosensors. Chem Eur J 21:9825–9832CrossRefGoogle Scholar
  23. 23.
    Yang XL, Chen X, Hou GH, Guan RF, Shao R, Xie MH (2016) A multiresponsive metal-organic framework: direct chemiluminescence, photoluminescence, and dual tunable sensing applications. Adv Funct Mater 26:393–398CrossRefGoogle Scholar
  24. 24.
    Wang B, Lv XL, Feng D, Xie LH, Zhang J, Li M, Xie Y, Li JR, Zhou HC (2016) Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. J Am Chem Soc 138:6204–6216CrossRefGoogle Scholar
  25. 25.
    Zhu X, Zheng HY, Wei XF, Lin ZY, Guo LH, Qiu B, Chen GN (2013) Metal-organic framework (MOF): a novel sensing platform for biomolecules. Chem Commun 49:1276–1278CrossRefGoogle Scholar
  26. 26.
    Hermosa C, Horrocks BR, Martinez JI, Liscio F, Gomez-Herrero J, Zamora F (2015) Mechanical and optical properties of ultralarge flakes of a metal-organic framework with molecular thickness. Chem Sci 6:2553–2558CrossRefGoogle Scholar
  27. 27.
    Peng Y, Li YS, Ban YJ, Jin H, Jiao WM, Liu XL, Yang WS (2014) Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346:1356–1359CrossRefGoogle Scholar
  28. 28.
    Xu H, Gao JK, Qian XF, Wang JP, He HJ, Cui YJ, Yang Y, Wang ZY, Qian GD (2016) Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+. J Mater Chem A 4:10900–10905CrossRefGoogle Scholar
  29. 29.
    Junggeburth SC, Diehl L, Werner S, Duppel V, Sigle W, Lotsch BV (2013) Ultrathin 2D coordination polymer nanosheets by surfactant-mediated synthesis. J Am Chem Soc 135:6157–6164CrossRefGoogle Scholar
  30. 30.
    Zhao MT, Wang YX, Ma QL, Huang Y, Zhang X, Ping JF, Zhang ZC, Lu QP, Yu YF, Xu H, Zhao YL, Zhang H (2015) Ultrathin 2D metal-organic framework nanosheets. Adv Mater 27:7372–7378CrossRefGoogle Scholar
  31. 31.
    Zhao SL, Wang Y, Dong JC, He CT, Yin HJ, An PF, Zhao K, Zhang XF, Gao C, Zhang LJ, Lv JW, Wang JX, Zhang JQ, Khattak AM, Khan NA, Wei ZX, Zhang J, Liu SQ, Zhao HJ, Tang ZY (2016) Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 1:1–10Google Scholar
  32. 32.
    Lan LY, Chen DK, Yao Y, Peng XS, Wu J, Li YB, Ping JF, Ying YB (2018) Phase-dependent fluorescence quenching efficiency of MoS2 nanosheets and their applications in multiplex target biosensing. ACS Appl Mater Interfaces 10:42009–42017CrossRefGoogle Scholar
  33. 33.
    Wang Q, Wang W, Lei J, Xu N, Gao F, Ju H (2013) Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal Chem 85:12182–12188CrossRefGoogle Scholar
  34. 34.
    Wang WB, Liu LQ, Song SS, Xu LG, Kuang H, Zhu JP, Xu CL (2017) Identification and quantification of eight Listeria monocytogene serotypes from Listeria spp. using a gold nanoparticle-based lateral flow assay. Microchim Acta 184:715–724CrossRefGoogle Scholar
  35. 35.
    Duan N, Wu SJ, Zhang HL, Zou Y, Wang ZP (2018) Fluorometric determination of Vibrio parahaemolyticus using an F0F1-ATPase-based aptamer and labeled chromatophores. Microchim Acta 185:304–309CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Zhejiang A&F UniversityHangzhouPeople’s Republic of China

Personalised recommendations