Advertisement

Microchimica Acta

, 186:92 | Cite as

In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid

  • Yanan Zhao
  • Juan Zhou
  • Zimu Jia
  • Danqun HuoEmail author
  • Qingyan Liu
  • Dengqin Zhong
  • Yu Hu
  • Mei Yang
  • Minghong Bian
  • Changjun HouEmail author
Original Paper
  • 182 Downloads

Abstract

A glassy carbon electrode was modified with a 3D-networked nanostructure composed of MoS2, reduced graphene oxide and gold nanoparticles (3D-MoS2/rGO/Au). The composites were prepared through in-situ growth of gold nanoparticles on 3D-MoS2/rGO nanosheets via a hydrothermal method. The morphology and electrochemical features of the composite were investigated. The 3D-MoS2/rGO/Au sensor exhibits excellent electrocatalytic activity for simultaneous detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The oxidation potentials are well separated at around −0.05 V for AA, 0.06 V for DA and 0.2 V for UA, respectively. The detection limits for individual detection and simultaneous detection (S/N = 3) are 0.93 μM and 1.46 μM for AA, 0.11 μM and 0.15 μM for DA, and 0.74 μM and 0.29 μM for UA. The method was applied to the quantitative analysis of AA, DA, and UA in spiked serum samples with satisfying results.

Graphical abstract

In-situ growth of gold nanoparticles on 3D-networked MoS2/rGO nanocomposite for individual and simultaneous determination of ascorbic acid, dopamine and uric acid.

Keywords

Electrochemical sensor Molybdenum disulfide Graphene Nanostructure Simultaneous determination Differential pulse voltammetry Oxidation potential Electrocatalytic activity Human serum 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NO. 81772290), Chongqing science and technology commission (CSTC2018jcyjAX0062), Graduate research and innovation foundation of Chongqing, China (Grant No. CYB18026), University innovation training program for College Students (201810611104), Brew Microorganisms Technology and Application of Key Laboratory Project in Sichuan Province (No. NJ2018-01) and sharing fund of Chongqing university’ s large equipment.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3222_MOESM1_ESM.doc (9.1 mb)
ESM 1 (DOC 9361 kb)

References

  1. 1.
    J J XD (2014) Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites. Nanoscale 6(19):11303–11309CrossRefGoogle Scholar
  2. 2.
    Chen J, He P, Bai H, He S, Zhang T, Zhang X, Dong F (2017) Poly(β-cyclodextrin)/carbon quantum dots modified glassy carbon electrode: preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid and tryptophan. Sens Actuators B Chem 252:9–16Google Scholar
  3. 3.
    Khan MMI, Baek GW, Kim K, Kwon HN, Jin SH (2017) Simultaneous detection of dopamine and uric acid on indium tin oxides modified with cost-effective gas cc hase synthesized single walled carbon nanotubes. Electroanal 29(8):1925–1933CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Zhou Q, Zhao W, Chu W, Zheng J (2016) Array of recessed gold nanoelectrodes formed with polymethylmethacrylate for individual detection of ascorbic acid, dopamine and uric acid. Electrochim Acta 212:25–31CrossRefGoogle Scholar
  5. 5.
    Zhao D, Fan D, Wang J, Xu C (2015) Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 182(7–8):1345–1352CrossRefGoogle Scholar
  6. 6.
    Yan S, Li X, Xiong Y, Wang M, Yang L, Liu X, Li X, Alshahrani LAM, Liu P, Zhang C (2016) Simultaneous determination of ascorbic acid, dopamine and uric acid using a glassy carbon electrode modified with the nickel(II)-bis(1,10-phenanthroline) complex and single-walled carbon nanotubes. Microchim Acta 183(4):1401–1408CrossRefGoogle Scholar
  7. 7.
    Bindumadhavan K, Srivastava SK, Mahanty S (2013) MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries. Chem Commun 49(18):1823–1825CrossRefGoogle Scholar
  8. 8.
    Cheng Z, He B, Zhou L (2014) A general one-step approach for in situ decoration of MoS2 nanosheets with inorganic nanoparticles. J Mater Chem A 3(3):1042–1048CrossRefGoogle Scholar
  9. 9.
    Hinnemann B, Moses PG, Bonde J, Jorgensen KP, Nielsen JH, Horch S, Chorkendorff I, Norskov JK (2005) Biornimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127(15):5308–5309CrossRefGoogle Scholar
  10. 10.
    Yang X, Liu W, Xiong M, Zhang Y, Liang T, Yang J, Xu M, Ye J, Chen H (2014) Au nanoparticles on ultrathin MoS2 sheets for plasmonic organic solar cells. J Mater Chem A 2(36):14798–14806CrossRefGoogle Scholar
  11. 11.
    Han J, Xia H, Wu Y, Kong SN, Deivasigamani A, Xu R, Hui KM, Kang Y (2016) Single-layer MoS2 nanosheet grafted upconversion nanoparticles for near-infrared fluorescence imaging-guided deep tissue cancer phototherapy. Nanoscale 8(15):7861–7865CrossRefGoogle Scholar
  12. 12.
    Su S, Sun H, Xu F, Yuwen L, Fan C, Wang L (2014) Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Microchim Acta 181(13–14):1497–1503CrossRefGoogle Scholar
  13. 13.
    Ma CB, Qi X, Chen B, Bao S, Yin Z, Wu XJ, Luo Z, Wei J, Zhang HL, Zhang H (2014) MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. Nanoscale 6(11):5624–5629CrossRefGoogle Scholar
  14. 14.
    Su S, Han X, Lu Z, Liu W, Zhu D, Chao J, Fan C, Wang L, Song S, Weng L, Wang L (2017) Facile synthesis of a MoS2-Prussian blue Nanocube Nanohybrid-based electrochemical sensing platform for hydrogen peroxide and carcinoembryonic antigen detection. Appl Mater Interfaces 9(14):12773–12781CrossRefGoogle Scholar
  15. 15.
    Park S-K, Yu S-H, Woo S, Quan B, Lee D-C, Kim MK, Sung Y-E, Piao Y (2013) A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries. Dalton Trans 42(7):2399–2405CrossRefGoogle Scholar
  16. 16.
    Tığ GA, Günendi G, Pekyardımcı Ş (2017) A selective sensor based on Au nanoparticles-graphene oxide-poly(2,6-pyridinedicarboxylic acid) composite for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. J Appl Electrochem (17):1–12Google Scholar
  17. 17.
    Kun C, Weixiang C (2011) In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun 47(14):4252–4254Google Scholar
  18. 18.
    Lin X, Ni Y, Kokot S (2016) Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2 -AuNPs modified glassy carbon electrode. Sensors Actuators B Chem 233:100–106CrossRefGoogle Scholar
  19. 19.
    Daemi S, Ashkarran AA, Bahari A, Ghasemi S (2017) Gold nanocages decorated biocompatible amine functionalized graphene as an efficient dopamine sensor platform. J Colloid Interface Sci 494:290–299CrossRefGoogle Scholar
  20. 20.
    Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou XW, Xie Y (2013) Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 25(40):5807–5813CrossRefGoogle Scholar
  21. 21.
    Chen X, Zhang G, Shi L, Pan S, Liu W, Pan H (2016) Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine. Mater Sci Eng C Mater 65:80–89CrossRefGoogle Scholar
  22. 22.
    Guo Z, Luo X, Li Y, Li D, Zhao Q, Li M, Ma C, Zhao Y (2017) Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid based on reduced graphene oxide-Ag/PANI modified glassy carbon electrode. Chem Res Chin Univ 33(3):507–512CrossRefGoogle Scholar
  23. 23.
    Zhu Q, Bao J, Huo D, Yang M, Hou C, Guo J, Chen M, Fa H, Luo X, Ma Y (2017) 3D graphene hydrogel – gold nanoparticles nanocomposite modified glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 238:1316–1323CrossRefGoogle Scholar
  24. 24.
    Li Y, Lin H, Peng H, Qi R, Luo C (2016) A glassy carbon electrode modified with MoS2 nanosheets and poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. MicrochimActa 183(9):1–7Google Scholar
  25. 25.
    Sun H, Chao J, Zuo X, Su S, Liu X, Yuwen L, Fan C, Wang L (2014) Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv 4(52):27625CrossRefGoogle Scholar
  26. 26.
    Wang C, Du J, Wang H, Zou CE, Jiang F, Yang P, Du Y (2014) A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 204:302–309CrossRefGoogle Scholar
  27. 27.
    Zhang X, Zhang YC, Ma LX (2016) One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 227(11):488–496CrossRefGoogle Scholar
  28. 28.
    Cai W, Lai J, Lai T, Xie H, Ye J (2016) Controlled functionalization of flexible graphene fibers for the simultaneous determination of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 224:225–232CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Yanan Zhao
    • 1
  • Juan Zhou
    • 1
  • Zimu Jia
    • 1
  • Danqun Huo
    • 2
    Email author
  • Qingyan Liu
    • 1
  • Dengqin Zhong
    • 1
  • Yu Hu
    • 1
  • Mei Yang
    • 1
  • Minghong Bian
    • 2
  • Changjun Hou
    • 1
    Email author
  1. 1.Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqingPeople’s Republic of China
  2. 2.Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of BioengineeringSichuan University of Science and EngineeringZigongPeople’s Republic of China

Personalised recommendations