Microchimica Acta

, 186:99 | Cite as

An infrared IgG immunoassay based on the use of a nanocomposite consisting of silica coated Fe3O4 superparticles

  • Kexin Wang
  • Yadan Ding
  • Xia HongEmail author
  • Yichun LiuEmail author
Original Paper


A reliable, rapid and ultrasensitive immunoassay is described for determination of immunoglobulin G (IgG). It is making use of biofunctional magnetite (Fe3O4) superparticles coated with SiO2 and serving as an infrared (IR) probe. The unique IR fingerprint signals originating from the transverse and longitudinal phonon modes, respectively, of the asymmetric stretching of the Si–O–Si bridges display a satisfactory resistance to optical interference from the environment. The adoption of Fe3O4 superparticles instead of Fe3O4 nanoparticles as the magnetic core warrants a controllable structure and a strong magnetic response. This facilitates the efficient purification of the probes and the alleviation of the interfacial resistance between the liquid-solid interfaces by using a magnet. The gold-coated substrate was used to immobilize goat-anti-human IgG. The analyte (human IgG) was incubated with the IR probes, and then captured by the substrate immobilized antibody with the assistance of an external magnetic field. The integral area of the IR absorption band between 1250 cm−1 – 900 cm−1 was chosen for quantitative assay. The limit of detection is 95 fM, which is two orders of magnitude better than that without the magnetic field. The assay time was shortened from 2 h to 1 min. High selectivity, specificity, and long-term stability of the immunoassay were achieved. The performance of the assay when analyzing blood samples confirmed the practicability of the method.

Graphical abstract

Schematic presentation of the infrared (IR) immunoassay based on Fe3O4 superparticle@SiO2 nanocomposites. The assistance of an external magnetic field reduces the incubation time and improves the detection sensitivity.


IR spectroscopy Protein Magnetic beads Blood Self-assembly Molecular vibration Core-shell Sandwich immunoassay Superparamagnetism 



This work was supported by the National Natural Science Foundation of China (Grants No. 51272040 and 11604043), Thirteenth Five-Year Science and Technology Research Project of Education Department of Jilin Province (No. JJKH20170910KJ), Open Project of Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education (130028853) and Project funded by China Postdoctoral Science Foundation (No. 2017 M611294).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3219_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1517 kb)


  1. 1.
    Hlavacek A, Farka Z, Huebner M, Hornakova V, Nemecek D, Niessner R, Skladal P, Knopp D, Gorris HH (2016) Competitive upconversion-linked immunosorbent assay for the sensitive detection of diclofenac. Anal Chem 88(11):6011–6017. CrossRefPubMedGoogle Scholar
  2. 2.
    Wu X, Oo MKK, Reddy K, Chen Q, Sun Y, Fan X (2014) Optofluidic laser for dual-mode sensitive biomolecular detection with a large dynamic range. Nat Commun 5.
  3. 3.
    Wu L, Wang Z, Zong S, Huang Z, Zhang P, Cui Y (2012) A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods. Biosens Bioelectron 38(1):94–99. CrossRefPubMedGoogle Scholar
  4. 4.
    Yang K, Hu Y, Dong N, Zhu G, Zhu T, Jiang N (2017) A novel SERS-based magnetic aptasensor for prostate specific antigen assay with high sensitivity. Biosens Bioelectron 94:286–291. CrossRefPubMedGoogle Scholar
  5. 5.
    Li C, Zuo J, Li Q, Chang Y, Zhang Y, Tu L, Liu X, Xue B, Zhao H, Zhang H, Kong X (2017) One-step in situ solid-substrate-based whole blood immunoassay based on FRET between upconversion and gold nanoparticles. Biosens Bioelectron 92:335–341. CrossRefPubMedGoogle Scholar
  6. 6.
    Wen Y, Xing F, He S, Song S, Wang L, Long Y, Li D, Fan C (2010) A graphene-based fluorescent nanoprobe for silver(i) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun 46(15):2596–2598. CrossRefGoogle Scholar
  7. 7.
    Song S, Qin Y, He Y, Huang Q, Fan C, Chen H-Y (2010) Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev 39:4234–3243. CrossRefPubMedGoogle Scholar
  8. 8.
    Alesker M, Heller A, Malik Z, Makarovsky I, Lellouche J-P (2011) Hybrid silica nanoparticles traceable by fluorescence and FT-IR spectroscopy: preparation, characterization and preliminary biological studies. J Mater Chem 21(29):10883–10893. CrossRefGoogle Scholar
  9. 9.
    Fischer-Durand N, Salmain M, Rudolf B, Dai L, Juge L, Guerineau V, Laprevote O, Vessieres A, Jaouen G (2010) Site-specific conjugation of metal carbonyl dendrimer to antibody and its use as detection reagent in immunoassay. Anal Biochem 407(2):211–219. CrossRefPubMedGoogle Scholar
  10. 10.
    Liao W, Wei F, Liu D, Qian MX, Yuan G, Zhao XS (2006) FTIR-ATR detection of proteins and small molecules through DNA conjugation. Sensors Actuators B Chem 114(1):445–450. CrossRefGoogle Scholar
  11. 11.
    Chen Y, Chen H, Shi J (2013) In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 25(23):3144–3176. CrossRefPubMedGoogle Scholar
  12. 12.
    Ding Y, Chu X, Hong X, Zou P, Liu Y (2012) The infrared fingerprint signals of silica nanoparticles and its application in immunoassay. Appl Phys Lett 100(1):013701. CrossRefGoogle Scholar
  13. 13.
    Zhao P, Ni R, Wang K, Hong X, Ding Y, Cong T, Liu J, Zhao H (2017) Dual-mode immunoassay based on shape code and infrared absorption fingerprint signals of silica nanorods. Anal Bioanal Chem 409(17):4207–4213. CrossRefPubMedGoogle Scholar
  14. 14.
    Donato P, Le Nguyen KH (2015) Homogenization of diffusion problems with a nonlinear interfacial resistance. Nonlinear Differ Equ Appl 22(5):1345–1380Google Scholar
  15. 15.
    Harada M, Eguchi W, Imamura T, Fujiyoshi K (1975) Interfacial resistance in liquid-liquid mass transfer. J Chem Eng Jpn 8(3):233–238. CrossRefGoogle Scholar
  16. 16.
    Babamiri B, Hallaj R, Salimi A, Akhtari K (2017) Potential-resolved electrochemiluminescence immunoassay for simultaneous determination of CEA and AFP tumor markers using dendritic nanoclusters and Fe3O4@SiO2 nanoparticles. Microchim Acta 184(9):3613–3623. CrossRefGoogle Scholar
  17. 17.
    Jiang H, Liu Y, Luo W, Wang Y, Tang X, Dou W, Cui Y, Liu W (2018) A resumable two-photon fluorescent probe for Cu2+ and S2− based on magnetic silica core-shell Fe3O4@SiO2 nanoparticles and its application in bioimaging. Anal Chim Acta 1014:91–99. CrossRefPubMedGoogle Scholar
  18. 18.
    Peterson RD, Chen W, Cunningham BT, Andrade JE (2015) Enhanced sandwich immunoassay using antibody-functionalized magnetic iron-oxide nanoparticles for extraction and detection of soluble transferrin receptor on a photonic crystal biosensor. Biosens Bioelectron 74:815–822. CrossRefPubMedGoogle Scholar
  19. 19.
    Singh G, Sanchita RS, Sharma G, Kalra P, Singh N, Verma V (2018) Coumarin-derived organosilatranes: functionalization at magnetic silica surface and selective recognition of Hg2+ ion. Sensors Actuators B Chem 266:861–872. CrossRefGoogle Scholar
  20. 20.
    Fu R, Jin X, Liang J, Zheng W, Zhuang J, Yang W (2011) Preparation of nearly monodispersed Fe3O4/SiO2 composite particles from aggregates of Fe3O4 nanoparticles. J Mater Chem 21(39):15352–15356. CrossRefGoogle Scholar
  21. 21.
    Zhuang J, Wu H, Yang Y, Cao YC (2008) Controlling colloidal superparticle growth through solvophobic interactions. Angew Chem Int Ed 47(12):2208–2212. CrossRefGoogle Scholar
  22. 22.
    Zhuang J, Wu H, Yang Y, Cao YC (2007) Supercrystalline colloidal particles from artificial atoms. J Am Chem Soc 129(46):14166−+. CrossRefPubMedGoogle Scholar
  23. 23.
    Ding Y, Cong T, Chu X, Jia Y, Hong X, Liu Y (2016) Magnetic-bead-based sub-femtomolar immunoassay using resonant Raman scattering signals of ZnS nanoparticles. Anal Bioanal Chem 408(18):5013–5019. CrossRefPubMedGoogle Scholar
  24. 24.
    Hong X, Chu X, Zou P, Liu Y, Yang G (2010) Magnetic-field-assisted rapid ultrasensitive immunoassays using Fe3O4/ZnO/Au nanorices as Raman probes. Biosens Bioelectron 26(2):918–922. CrossRefPubMedGoogle Scholar
  25. 25.
    Al-Oweini R, El-Rassy H (2009) Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R”Si(OR')3 precursors. J Mol Struct 919 (1–3):140–145.
  26. 26.
    Hu Q, Suzuki H, Gao H, Araki H, Yang W, Noda T (2003) High-frequency FTIR absorption of SiO2/Si nanowires. Chem Phys Lett 378(3–4):299–304. CrossRefGoogle Scholar
  27. 27.
    Martínez JR, Ruiz F, Vorobiev YV, Pérez-Robles F, González-Hernández J (1998) Infrared spectroscopy analysis of the local atomic structure in silica prepared by sol-gel. J Chem Phys 109(17):7511–7514. CrossRefGoogle Scholar
  28. 28.
    Buongiorno J (2006) Convective transport in nanofluids. J Heat Transfer 128(3):240–250.
  29. 29.
    Wang S, Chen Z, Choo J, Chen L (2016) Naked-eye sensitive ELISA-like assay based on gold-enhanced peroxidase-like immunogold activity. Anal Bioanal Chem 408(4):1015–1022. CrossRefPubMedGoogle Scholar
  30. 30.
    Zhu L, Cui X, Wu J, Wang Z, Wang P, Hou Y, Yang M (2014) Fluorescence immunoassay based on carbon dots as labels for the detection of human immunoglobulin G. Anal Methods 6(12):4430–4436. CrossRefGoogle Scholar
  31. 31.
    Shirai A, Henares TG, Sueyoshi K, Endo T, Hisamoto H (2016) Fast and single-step immunoassay based on fluorescence quenching within a square glass capillary immobilizing graphene oxide-antibody conjugate and fluorescently labelled antibody. Analyst 141(11):3389–3394. CrossRefPubMedGoogle Scholar
  32. 32.
    Fu C, Gu Y, Wu Z, Wang Y, Xu S, Xu W (2014) Surface-enhanced Raman scattering (SERS) biosensing based on nanoporous dielectric waveguide resonance. Sensors Actuators B Chem 201:173–176. CrossRefGoogle Scholar
  33. 33.
    Balzerova A, Fargasova A, Markova Z, Ranc V, Zboril R (2014) Magnetically-assisted surface enhanced Raman spectroscopy (MA-SERS) for label-free determination of human immunoglobulin G (IgG) in blood using Fe3O4@Ag nanocomposite. Anal Chem 86(22):11107–11114. CrossRefPubMedGoogle Scholar
  34. 34.
    Tang D, Ren J, Lu M (2017) Multiplexed electrochemical immunoassay for two immunoglobulin proteins based on Cd and Cu nanocrystals. Analyst 142(24):4794–4800. CrossRefPubMedGoogle Scholar
  35. 35.
    Li H, Zhao M, Liu W, Chu W, Guo Y (2016) Polydimethylsiloxane microfluidic chemiluminescence immunodevice with the signal amplification strategy for sensitive detection of human immunoglobin G. Talanta 147:430–436. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of UV-Emitting Materials and Technology, Ministry of EducationNortheast Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations