Microchimica Acta

, 186:122 | Cite as

A fluorescent probe composed of quantum dot labeled aptamer and graphene oxide for the determination of the lipopolysaccharide endotoxin

  • Lu-xin Wen
  • Jun-jiang LvEmail author
  • Li Chen
  • Shun-bo Li
  • Xiao-jing Mou
  • Yi XuEmail author
Original Paper


Endotoxins are complex lipopolysaccharides (LPS) and key components of the outer cell membrane of Gram-negative bacteria. The authors report on a fluorescent aptamer-based probe for the determination of LPS of Gram-negative bacteria. An aptamer against LPS was fluorescently labeled with CdSe/ZnS quantum dots. Its emission is quenched on addition of graphene oxide (GO). On addition of LPS, the aptamer binds LPS and GO is released. This results in the recovery of fluorescence, typically measured at excitation/emission wavelengths of 495/543 nm. The probe responds to LPS in the 10–500 ng·mL−1 concentration range, and the detection limit is 8.7 ng·mL−1. It can be used for selective detection of LPS from different Gram-negative bacteria, in the presence of biological interferents.

Graphical abstract

Schematic presentation of a green fluorescent probe comprised of an aptamer labelled with CdSe/ZnS quantum dots and of graphene oxide. Lipopolysaccharides bind to the aptamer and release graphene oxide to result in fluorescence recovery, which is measured at an emission wavelength 543 nm.


Biosensor Gram-negative bacteria DNA Fluorescence quenching Resonance energy transfer CdSe/ZnS quantum dots Fluorescence turn-on Receptor 



This work was financially supported by National Natural Science Foundation of China (No.21375156), National High Technology Research and Development Program of China (Ministry of Science and Technology 863 Plan)(2015AA021104), Frontier Research Key Projects of Chongqing Science and Technology Committee (cstc2015jcyjBX0010), and Fundamental Research Funds for the Central Universities (No. 10611CDJXZ238826).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3218_MOESM1_ESM.docx (2.4 mb)
ESM 1 (DOCX 2446 kb)


  1. 1.
    Erridge C, Bennett-Guerrero E, Poxton IR (2002) Structure and function of lipopolysaccharides. Microbes Infect 4(8):837–851. CrossRefPubMedGoogle Scholar
  2. 2.
    Ulevitch RJ, Tobias PS (1995) Recptor-dependent michanisms of cell stimulation by bacterial-endotoxin. Annu Rev Immunol 13:437–457. CrossRefPubMedGoogle Scholar
  3. 3.
    Cooper JF, Levin J, Wagner HN (1971) Quantitative comparison of in-vitro and in-vivo methods for detection of endotoxin. J Lab Clin Med 78(1):138–148PubMedGoogle Scholar
  4. 4.
    Bolden JS, Warburton RE, Phelan R, Murphy M, Smith KR, De Felippis MR, Chen D (2016) Endotoxin recovery using limulus amebocyte lysate (LAL) assay. Biologicals 44(5):434–440. CrossRefPubMedGoogle Scholar
  5. 5.
    Liu T, Zhang W, Zhou L, Guo Z, Tang Y, Miao P (2017) A quartz crystal microbalance sensor for endotoxin assay by monitoring limulus amebocyte lysate protease reaction. Anal Chim Acta 961:106–111. CrossRefPubMedGoogle Scholar
  6. 6.
    Das AP, Kumar PS, Swain S (2014) Recent advances in biosensor based endotoxin detection. Biosens Bioelectron 51:62–75. CrossRefPubMedGoogle Scholar
  7. 7.
    Alahi MEE, Mukhopadhyay SC (2017) Detection methodologies for pathogen and toxins: a review. Sensors 17(8).
  8. 8.
    Cheng C, Wu J, Chen J (2018) A highly sensitive aptasensor for on-site detection of lipopolysaccharides in food. Electrophoresis.
  9. 9.
    Ding S-J, Chang B-W, Wu C-C, Chen C-J, Chang H-C (2007) A new method for detection of endotoxin on polymyxin B-immobilized gold electrodes. Electrochem Commun 9(5):1206–1211. CrossRefGoogle Scholar
  10. 10.
    Posha B, Nambiar SR, Sandhyarani N (2018) Gold atomic cluster mediated electrochemical aptasensor for the detection of lipopolysaccharide. Biosens Bioelectron 101:199–205. CrossRefPubMedGoogle Scholar
  11. 11.
    Ying G, Wang M, Yi Y, Chen J, Mei J, Zhang Y, Chen S (2018) Construction and application of an electrochemical biosensor based on an endotoxin aptamer. Biotechnol Appl Biochem 65(3):323–327. CrossRefPubMedGoogle Scholar
  12. 12.
    Liu T, Gao L, Zhao J, Cao Y, Tang Y, Miao P (2018) A polymyxin B-silver nanoparticle colloidal system and the application of lipopolysaccharide analysis. Analyst 143(5):1053–1058. CrossRefPubMedGoogle Scholar
  13. 13.
    Zandieh M, Hosseini SN, Vossoughi M, Khatami M, Abbasian S, Moshaii A (2018) Label-free and simple detection of endotoxins using a sensitive LSPR biosensor based on silver nanocolumns. Anal Biochem 548:96–101. CrossRefPubMedGoogle Scholar
  14. 14.
    Wu J, Zawistowski A, Ehrmann M, Yi T, Schmuck C (2011) Peptide functionalized Polydiacetylene liposomes act as a fluorescent turn-on sensor for bacterial lipopolysaccharide. J Am Chem Soc 133(25):9720–9723. CrossRefPubMedGoogle Scholar
  15. 15.
    Jiang G, Wang J, Yang Y, Zhang G, Liu Y, Lin H, Zhang G, Li Y, Fan X (2016) Fluorescent turn-on sensing of bacterial lipopolysaccharide in artificial urine sample with sensitivity down to nanomolar by tetraphenylethylene based aggregation induced emission molecule. Biosens Bioelectron 85:62–67. CrossRefPubMedGoogle Scholar
  16. 16.
    Voss S, Fischer R, Jung G, Wiesmueller K-H, Brock R (2007) A fluorescence-based synthetic LPS sensor. J Am Chem Soc 129(3):554–561. CrossRefPubMedGoogle Scholar
  17. 17.
    Xie L, Ling X, Fang Y, Zhang J, Liu Z (2009) Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. J Am Chem Soc 131(29):9890–9891. CrossRefPubMedGoogle Scholar
  18. 18.
    Lim SK, Chen P, Lee FL, Moochha S, Liedberg B (2015) Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (endotoxin) detection. Anal Chem 87(18):9408–9412. CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang Z, Yang J, Pang W, Yan G (2017) An aptamer-based fluorescence probe for facile detection of lipopolysaccharide in drinks. RSC Adv 7(86):54920–54926. CrossRefGoogle Scholar
  20. 20.
    Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122(49):12142–12150. CrossRefGoogle Scholar
  21. 21.
    Zhen SJ, Zhuang HL, Wang J, Huang CZ (2013) Dual-aptamer-based sensitive and selective detection of prion protein through the fluorescence resonance energy transfer between quantum dots and graphene oxide. Anal Methods 5(24):6904–6907. CrossRefGoogle Scholar
  22. 22.
    Lu W, Qin X, Luo Y, Chang G, Sun X (2011) CdS quantum dots as a fluorescent sensing platform for nucleic acid detection. Microchim Acta 175(3–4):355–359. CrossRefGoogle Scholar
  23. 23.
    Duan YF, Ning Y, Song Y, Deng L (2014) Fluorescent aptasensor for the determination of Salmonella typhimurium based on a graphene oxide platform. Microchim Acta 181(5–6):647–653. CrossRefGoogle Scholar
  24. 24.
    Lu Z, Chen X, Wang Y, Zheng X, Li CM (2015) Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchim Acta 182(3–4):571–578. CrossRefGoogle Scholar
  25. 25.
    Kim S-E, Su W, Cho M, Lee Y, Choe W-S (2012) Harnessing aptamers for electrochemical detection of endotoxin. Anal Biochem 424(1):12–20. CrossRefPubMedGoogle Scholar
  26. 26.
    Wang R, Xu Y, Sors T, Irudayaraj J, Ren W, Wang R (2018) Impedimetric detection of bacteria by using a microfluidic chip and silver nanoparticle based signal enhancement. Microchim Acta 185(3):184. CrossRefGoogle Scholar
  27. 27.
    Cui F, Xu Y, Wang R, Liu H, Chen L, Zhang Q, Mu X (2017) Label-free impedimetric glycan biosensor for quantitative evaluation interactions between pathogenic bacteria and mannose. Biosens Bioelectron 103:94–98. CrossRefPubMedGoogle Scholar
  28. 28.
    Wang R, Ni Y, Xu Y, Jiang Y, Dong C, Chuan N (2015) Immuno-capture and in situ detection of Salmonella typhimurium on a novel microfluidic chip. Anal Chim Acta 853:710–717. CrossRefPubMedGoogle Scholar
  29. 29.
    Wang R, Xu Y, Zhang T, Jiang Y (2015) Rapid and sensitive detection of Salmonella typhimurium using aptamer-conjugated carbon dots as fluorescence probe. Anal Methods 7(5):1701–1706. CrossRefGoogle Scholar
  30. 30.
    Bai L, Chai Y, Pu X, Yuan R (2014) A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification. Nanoscale 6(5):2902–2908. CrossRefPubMedGoogle Scholar
  31. 31.
    Ye H, Duan N, Wu S, Tan G, Gu H, Li J, Wang H, Wang Z (2017) Orientation selection of broad-spectrum aptamers against lipopolysaccharides based on capture-SELEX by using magnetic nanoparticles. Microchim Acta 184(11):4235–4242. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Disciplines Lab of Novel Micro-nano Devices and System TechnologyChongqing UniversityChongqingChina
  2. 2.School of Chemistry and Chemical EngineeringChongqing UniversityChongqingChina
  3. 3.National Center for International Research of Micro/Nano-System and New Material TechnologyChongqing UniversityChongqingChina
  4. 4.Collaborative Innovation Center for Brain ScienceChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations