Advertisement

Microchimica Acta

, 186:94 | Cite as

Colorimetric and electrochemical (dual) thrombin assay based on the use of a platinum nanoparticle modified metal-organic framework (type Fe-MIL-88) acting as a peroxidase mimic

  • Ting Cheng
  • Xiang Li
  • Peng Huang
  • Han Wang
  • Meixia Wang
  • Wenming YangEmail author
Original Paper

Abstract

An electrochemical and colorimetric dual-readout method is described for the determination of thrombin. A platinum nanoparticle (Pt NP) modified metal organic framework (MOF) acts as a peroxidase (POx) mimic that causes the formation of a blue product from 3,3′,5,5′-tetramethylbenzidine (TMB) and hydrogen peroxide, with an absorption maximum at 650 nm. In addition, gold nanoparticles enrich initiators that trigger the hybridization chain reaction for dual signal amplification to generate an electrochemical current typically measured at 0.31 V (from −0.5 to −0.1 V) and allow quantitation of thrombin with high sensitivity and over a wide detection range. The colorimetric and electrochemical (dual) thrombin assay produces two kinds of signals which warrants accuracy, diversity, and an option for visual inspection. The dual-channel sensor allows for the quantitative determination of thrombin with a low detection limit (0.33 fM) for the electrochemical method and 0.17 pM for the colorimetric method) and over a wide detection range (1 fM to 10 nM for electrochemical method and 0.5 pM to 1 nM for colorimetric method). The electrochemical detection limit is lower than that of colorimetry, and the linear range is wider, which is more suitable for further quantitative analysis of the target.

Graphical abstract

Schematic representation of a colorimetric and electrochemical (dual) thrombin assay based on the use of a platinum nanoparticle modified metal-organic framework for color development and hybridization chain reaction for electrochemical signal. C-TBA: complementary sequences of thrombin aptamer, TBA: thrombin aptamer, I-Au NPs: initiators enriched by gold nanoparticles, S-AuE: sensing gold electrode, RS-AuE: reacted sensing gold electrode, TB: thrombin, MB: Methylene Blue, HCR: hybridization chain reaction.

Keywords

Dual-readout method Gold nanoparticles Dual signal amplification Enzyme-free Hybridization chain reaction 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.81373599), a National Major Difficult Disease Clinical Service Capacity Building project (No.2100202), and Special Projects of the National Chinese Medicine Industry (201507001-12).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3209_MOESM1_ESM.doc (2 mb)
ESM 1 (DOC 2033 kb)

References

  1. 1.
    Chen ZB, Tan Y, Zhang CM, Yin L, Ma H, Ye NS, Qiang H, Lin YQ (2014) A colorimetric aptamer biosensor based on cationic polymer and gold nanoparticles for the ultrasensitive detection of thrombin. Biosens Bioelectron 56:46-50.  https://doi.org/10.1016/j.bios.2014.01.012 CrossRefPubMedGoogle Scholar
  2. 2.
    Bai LJ, Chai YQ, Pu XY, Yuan R (2014) A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification. Nanoscale 6(5):2902-2908.  https://doi.org/10.1039/c3nr05930h CrossRefPubMedGoogle Scholar
  3. 3.
    Qiu ZL, Shu J, Tang DP (2018) Near-infrared-to-ultraviolet light-mediated Photoelectrochemical Aptasensing platform for Cancer biomarker based on Core Shell NaYF4:Yb,tm@TiO2 Upconversion microrods. Anal Chem 90(1):1021-1028.  https://doi.org/10.1021/acs.analchem.7b04479 CrossRefPubMedGoogle Scholar
  4. 4.
    Ouyang H, Lu Q, Wang WW, Song Y, Tu XM, Zhu CZ, Smith JN, Du D, Fu ZF, Lin YH (2018) Dual-readout Immunochromatographic assay by utilizing MnO2 Nanoflowers as the unique colorimetric/chemiluminescent probe. Anal Chem 90(8):5147-5152.  https://doi.org/10.1021/acs.analchem.7b05247 CrossRefPubMedGoogle Scholar
  5. 5.
    Wu P, Miao LN, Wang HF, Shao XG, Yan XP (2011) A multidimensional sensing device for the discrimination of proteins based on manganese-doped ZnS quantum dots. Angew Chem Int Edit 50(35):8118-8121.  https://doi.org/10.1002/anie.201101882 CrossRefGoogle Scholar
  6. 6.
    Chuong TT, Pallaoro A, Chaves CA, Li Z, Lee J, Eisenstein M, Stucky GD, Moskovits M, Soh HT (2017) Dual-reporter SERS-based biomolecular assay with reduced false-positive signals. P Natl Acad Sci USA 114(34):9056-9061.  https://doi.org/10.1073/pnas.1700317114 CrossRefGoogle Scholar
  7. 7.
    Tang DP, Tang J, Li QF, Su BL, Chen GN (2011) Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of DNase I. Anal Chem 83(19):7255-7259.  https://doi.org/10.1021/ac201891w CrossRefPubMedGoogle Scholar
  8. 8.
    Liu DB, Wang ZT, Jin A, Huang XL, Sun XL, Wang F, Yan Q, Ge SX, Xia NS, Niu G, Liu G, Walker ARH, Chen XY (2013) Acetylcholinesterase-catalyzed hydrolysis allows ultrasensitive detection of pathogens with the naked eye. Angew Chem Int Edit 52(52):14065-14069.  https://doi.org/10.1002/anie.201307952 CrossRefGoogle Scholar
  9. 9.
    Wang ZZ, Chen ZW, Gao N, Ren JS, Qu XG (2015) Transmutation of personal glucose meters into portable and highly sensitive microbial pathogen detection platform. Small 11(37):4970-4975.  https://doi.org/10.1002/smll.201500944 CrossRefPubMedGoogle Scholar
  10. 10.
    Liu DB, Chen WW, Wei JH, Li XB, Wang Z, Jiang XY (2012) A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal Chem 84(9):4185-4191.  https://doi.org/10.1021/ac300545p CrossRefPubMedGoogle Scholar
  11. 11.
    Deng JJ, Ma WJ, Yu P, Mao LQ (2015) Colorimetric and fluorescent dual mode sensing of alcoholic strength in Spirit samples with stimuli-responsive infinite coordination polymers. Anal Chem 87(13):6958-6965.  https://doi.org/10.1021/acs.analchem.5b01617 CrossRefPubMedGoogle Scholar
  12. 12.
    Luo ZB, Zhang LJ, Zeng RJ, Su LS, Tang DP (2018) Near-infrared light-excited Core-Core-Shell UCNP@au@CdS Upconversion Nanospheres for ultrasensitive Photoelectrochemical enzyme immunoassay. Anal Chem 90(15):9568-9575.  https://doi.org/10.1021/acs.analchem.8b02421 CrossRefPubMedGoogle Scholar
  13. 13.
    Tang DP, Lin YX, Zhou Q (2018) Carbon dots prepared from Litchi chinensis and modified with manganese dioxide nanosheets for use in a competitive fluorometric immunoassay for aflatoxin B-1. Microchim Acta 185(10):476.  https://doi.org/10.1007/s00604-018-3012-2 CrossRefGoogle Scholar
  14. 14.
    Hou YH, Wang JJ, Jiang YZ, Lv C, Xia L, Hong SL, Lin M, Lin Y, Zhang ZL, Pang DW (2018) A colorimetric and electrochemical immunosensor for point-of-care detection of enterovirus 71. Biosens Bioelectron 99:186-192.  https://doi.org/10.1016/j.bios.2017.07.035 CrossRefPubMedGoogle Scholar
  15. 15.
    Duan WN, Wang XZ, Wang HX, Li F (2018) Fluorescent and colorimetric dual-mode aptasensor for thrombin detection based on target-induced conjunction of split aptamer fragments. Talanta 180:76-80.  https://doi.org/10.1016/j.talanta.2017.12.033 CrossRefPubMedGoogle Scholar
  16. 16.
    Wang YL, Sun YJ, Dai HC, Ni PJ, Jiang S, Lu WD, Li Z, Li Z (2016) A colorimetric biosensor using Fe3O4 nanoparticles for highly sensitive and selective detection of tetracyclines. Sensor Actuat B-Chem 236:621-626.  https://doi.org/10.1016/j.snb.2016.06.029 CrossRefGoogle Scholar
  17. 17.
    Li YH, Liu XY, Zhang RY (2017) Sensitive and selective colorimetric detection of glutathione in human plasma with 2,2 '-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and ag+ ion. Spectrochim Acta A 173:880-885.  https://doi.org/10.1016/j.saa.2016.10.048 CrossRefGoogle Scholar
  18. 18.
    Ren RR, Cai GN, Yu ZZ, Zeng YY, Tang DP (2018) Metal-Polydopamine framework: an innovative signal-generation tag for colorimetric immunoassay. Anal Chem 90(18):11099-11105.  https://doi.org/10.1021/acs.analchem.8b03538 CrossRefPubMedGoogle Scholar
  19. 19.
    Deng HH, Lin XL, Liu YH, Li KL, Zhuang QQ, Peng HP, Liu AL, Xia XH, Chen W (2017) Chitosan-stabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nanoscale 9(29):10292-10300.  https://doi.org/10.1039/c7nr03399k CrossRefPubMedGoogle Scholar
  20. 20.
    Peng J, Guan JF, Yao HQ, Jin XY (2016) Magnetic colorimetric immunoassay for human interleukin-6 based on the oxidase activity of ceria spheres. Anal Biochem 492:63-68.  https://doi.org/10.1016/j.ab.2015.09.018 CrossRefPubMedGoogle Scholar
  21. 21.
    Lai WQ, Wei QH, Xu MD, Zhuang JY, Tang DP (2017) Enzyme-controlled dissolution of MnO2 nanoflakes with enzyme cascade amplification for colorimetric immunoassay. Biosens Bioelectron 89:645-651.  https://doi.org/10.1016/j.bios.2015.12.035 CrossRefPubMedGoogle Scholar
  22. 22.
    Tan HL, Ma CJ, Gao L, Li Q, Song YH, Xu FG, Wang T, Wang L (2014) Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chem-Eur J 20(49):16377-16383.  https://doi.org/10.1002/chem.201404960 CrossRefPubMedGoogle Scholar
  23. 23.
    Dalapati R, Sakthivel B, Ghosalya MK, Dhakshinamoorthy A, Biswas S (2017) A cerium-based metal-organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. Crystengcomm 19(39):5915-5925.  https://doi.org/10.1039/c7ce01053b CrossRefGoogle Scholar
  24. 24.
    Liu YL, Fu WL, Li CM, Huang CZ, Li YF (2015) Gold nanoparticles immobilized on metal-organic frameworks with enhanced catalytic performance for DNA detection. Anal Chim Acta 861:55-61.  https://doi.org/10.1016/j.aca.2014.12.032 CrossRefPubMedGoogle Scholar
  25. 25.
    Pham MH, Vuong T, Vu AT, Do TO (2011) Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic framework nanocrystals. Langmuir 27(24):15261-15267.  https://doi.org/10.1021/la203570h CrossRefPubMedGoogle Scholar
  26. 26.
    Liu SF, Wang Y, Ming JJ, Lin Y, Cheng CB, Li F (2013) Enzyme-free and ultrasensitive electrochemical detection of nucleic acids by target catalyzed hairpin assembly followed with hybridization chain reaction. Biosens Bioelectron 49:472-477.  https://doi.org/10.1016/j.bios.2013.05.037 CrossRefPubMedGoogle Scholar
  27. 27.
    Wen CY, Bi JH, Wu LL, Zeng JB (2018) Aptamer-functionalized magnetic and fluorescent nanospheres for one-step sensitive detection of thrombin. Microchim Acta 185(1):77.  https://doi.org/10.1007/s00604-017-2621-5 CrossRefGoogle Scholar
  28. 28.
    Wang L, Yang W, Li TF, Li D, Cui ZM, Wang Y, Ji SL, Song QX, Shu C, Ding L (2017) Colorimetric determination of thrombin by exploiting a triple enzyme-mimetic activity and dual-aptamer strategy. Microchim Acta 184(9):3145-3151.  https://doi.org/10.1007/s00604-017-2327-8 CrossRefGoogle Scholar
  29. 29.
    Wen DX, He MH, Ma KF, Cui Y, Kong JM, Yang HX, Liu QY (2018) Highly sensitive fluorometric determination of thrombin by on-chip signal amplification initiated by terminal deoxynucleotidyl transferase. Microchim Acta 185(8):380.  https://doi.org/10.1007/S00604-018-2903-6 CrossRefGoogle Scholar
  30. 30.
    Higuchi A, Siao YD, Yang ST, Hsieh PV, Fukushima H, Chang Y, Ruaan RC, Chen WY (2008) Preparation of a DNA aptamer-Pt complex and its use in the colorimetric sensing of thrombin and anti-thrombin antibodies. Anal Chem 80(17):6580-6586.  https://doi.org/10.1021/ac8006957 CrossRefPubMedGoogle Scholar
  31. 31.
    Liu YY, Zhao YH, Fan Q, Khan MS, Li XJ, Zhang Y, Ma HM, Wei Q (2018) Aptamer based electrochemiluminescent thrombin assay using carbon dots anchored onto silver-decorated polydopamine nanospheres. Microchim Acta 185(2):85.  https://doi.org/10.1007/s00604-017-2616-2 CrossRefGoogle Scholar
  32. 32.
    Shi K, Dou BT, Yang JM, Yuan R, Xiang Y (2017) Target-triggered catalytic hairpin assembly and TdT-catalyzed DNA polymerization for amplified electronic detection of thrombin in human serums. Biosens Bioelectron 87:495-500.  https://doi.org/10.1016/j.bios.2016.08.056 CrossRefPubMedGoogle Scholar
  33. 33.
    He BS (2018) Sandwich electrochemical thrombin assay using a glassy carbon electrode modified with nitrogen- and sulfur-doped graphene oxide and gold nanoparticles. Microchim Acta 185(7):344.  https://doi.org/10.1007/S00604-018-2872-9 CrossRefGoogle Scholar
  34. 34.
    Fan TT, Du Y, Yao Y, Wu J, Meng S, Luo JJ, Zhang X, Yang DZ, Wang CY, Qian Y, Gao FL (2018) Rolling circle amplification triggered poly adenine-gold nanoparticles production for label-free electrochemical detection of thrombin. Sensor Actuat B-Chem 266:9-18.  https://doi.org/10.1016/j.snb.2018.03.112 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Ting Cheng
    • 1
  • Xiang Li
    • 2
  • Peng Huang
    • 2
  • Han Wang
    • 2
  • Meixia Wang
    • 2
  • Wenming Yang
    • 2
    Email author
  1. 1.Graduate DepartmentAnhui University of Traditional Chinese MedicineHeifeiChina
  2. 2.Encephalopathy CenterThe First Affiliated Hospital of Anhui University of traditional Chinese MedicineHeifeiChina

Personalised recommendations