Microchimica Acta

, 186:167 | Cite as

Enzyme-free electrochemical detection of nanomolar levels of the organophosphorus pesticide paraoxon-ethyl by using a poly(N-isopropyl acrylamide)-chitosan microgel decorated with palladium nanoparticles

  • Bhuvanenthiran Mutharani
  • Palraj Ranganathan
  • Shen-Ming ChenEmail author
  • Chelladurai Karuppiah
Original Paper


A rapid voltammetric method is described for the determination of the organophosphorus pesticide paraoxon-ethyl (PEL). A glassy carbon electrode (GCE) was modified with a composite consisting of a poly(N-isopropylacrylamide)-chitosan microgel with incorporated palladium nanoparticles. The microgel was characterized by FE-SEM, EDX, XPS, FTIR, XRD, and EIS. The modified GCE is shown to enable direct electro-reductive determination of PEL by using differential pulse voltammetry. The method works in pH 7 solution and in the 0.01 μM to 1.3 mM PEL concentration range. At a typical working potential of −0.66 V (vs. Ag/AgCl) (at 50 mV/s), the detection limit is as low as 0.7 nM, and the electrochemical sensitivity is 1.60 μA μM−1 cm−2. Intriguingly, the modified GCE displays good recovery when applied to bok choy and water samples.

Graphical abstract

Schematic of an electrochemical method for determination of paraoxon ethyl (PEL) in bok choy extract and water by using poly(N-isopropyl acrylamide)-chitosan microgel decorated with palladium nanoparticle-modified glassy carbon electrodes (PdNPs/PNIPAM-CT microgel/GCE).


PNIPAM-CT microgel Pesticide detection Nitro compounds Real sample analysis Voltammetry method 


Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3206_MOESM1_ESM.docx (2.5 mb)
ESM 1 (DOCX 2.50 mb)


  1. 1.
    Khan A, Othman MBH, Chang BP, Akil HM (2015) Preparation, physicochemical and stability studies of chitosan-PNIPAM based responsive microgels under various pH and temperature conditions. Iran Polym J 24:317–328CrossRefGoogle Scholar
  2. 2.
    Stuart MAC, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113CrossRefGoogle Scholar
  3. 3.
    Hoshino Y, Ohashi RC, Miura Y (2014) Rational design of synthetic nanoparticles with a large reversible shift of acid dissociation constants: proton imprinting in stimuli responsive nanogel particles. Adv Mater 26:3718–3723CrossRefGoogle Scholar
  4. 4.
    Zhuang J, Gordon MR, Ventura J, Li L, Thayumanavan S (2013) Multi-stimuli responsive macromolecules and their assemblies. Chem Soc Rev 42:7421–7435CrossRefGoogle Scholar
  5. 5.
    Borges AC, Bourban PE, Pioletti DP, Månson JA (2010) Curing kinetics and mechanical properties of a composite hydrogel for the replacement of the nucleus pulposus. Compos Sci Technol 70:1847–1853CrossRefGoogle Scholar
  6. 6.
    Echeverria C, Soares P, Robalo A, Pereira L, Novo CM, Ferreira I, Borges JP (2015) One-pot synthesis of dual-stimuli responsive hybrid PNIPAAm-chitosan microgels. Materials Design 86:745–751CrossRefGoogle Scholar
  7. 7.
    Schild HG (1992) Poly (N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249CrossRefGoogle Scholar
  8. 8.
    Yin Z, Zhang J, Jiang LP, Zhu JJ (2009) Thermosensitive behavior of poly (N-isopropylacrylamide) and release of incorporated hemoglobin. J Phys Chem C 113:16104–16109CrossRefGoogle Scholar
  9. 9.
    Lu Y, Ballauff M (2011) Thermosensitive core–shell microgels: from colloidal model systems to nanoreactors. Prog Polym Sci 36:767–792CrossRefGoogle Scholar
  10. 10.
    Baghayeri M, Veisi H, Farhadi S, Beitollahi H, Maleki B (2018) Ag nanoparticles decorated Fe3O4/chitosan nanocomposite: synthesis, characterization and application toward electrochemical sensing of hydrogen peroxide. J Iran Chem Soc 15:1015–1022CrossRefGoogle Scholar
  11. 11.
    Patil AS, Gadad AP, Hiremath RD, Dandagi PM (2018) Exploration of the effect of chitosan and crosslinking agent concentration on the properties of dual responsive chitosan-g-poly (N-Isopropylacrylamide) co-polymeric particles. J Polym Environ 26:596–606CrossRefGoogle Scholar
  12. 12.
    Prabaharan M, Mano JF (2006) Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci 6:991–1008CrossRefGoogle Scholar
  13. 13.
    Liu W, Huang Y, Liu H, Hu Y (2007) Composite structure of temperature sensitive chitosan microgel and anomalous behavior in alcohol solutions. J Colloid Interface Sci 313:117–121CrossRefGoogle Scholar
  14. 14.
    Hernández P, Lucero-Acuña A, Gutiérrez-Valenzuela CA, Moreno R, Esquivel R (2017) Systematic evaluation of pH and thermoresponsive poly (n-isopropylacrylamide-chitosan-fluorescein) microgel. E-Polymers 17:399–408CrossRefGoogle Scholar
  15. 15.
    Marković BM, Maksin DD, Mojović ZD, Vuković ZM, Nastasović AB, Jovanović DM (2017) Electrochemical behavior of palladium modified amino-functionalized macroporous copolymer. J Electroanal Chem 786:94–101CrossRefGoogle Scholar
  16. 16.
    Jaiswal MK, Banerjee R, Pradhan P, Bahadur D (2010) Thermal behavior of magnetically modalized poly (N-isopropylacrylamide)-chitosan based nanohydrogel. Colloids Surf B 81:185–194CrossRefGoogle Scholar
  17. 17.
    Liu F, Huang L, Duan X, Li YY, Hu JQ, Li BH, Lu JA (2018) Facile method to prepare noble metal nanoparticles modified self-assembly (SAM) electrode. J Exp Nanosci 13:1–10CrossRefGoogle Scholar
  18. 18.
    Nitzan A, Ratner MA (2003) Electron transport in molecular wire junctions. Science 300:1384–1389CrossRefGoogle Scholar
  19. 19.
    Rehman S, Khan AR, Shah A, Badshah A, Siddiq M (2017) Preparation and characterization of poly (N-isoproylacrylamide-co-dimethylaminoethyl methacrylate) microgels and their composites of gold nanoparticles. Colloids Surf A Physicochem Eng Asp 520:826–833CrossRefGoogle Scholar
  20. 20.
    Thomas V, Namdeo M, Murali Mohan Y, Bajpai SK, Bajpai M (2007) Review on polymer, hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. Journal of macromolecular science part a. Pure Appl Chem 45:107–119Google Scholar
  21. 21.
    Hondred JA, Breger JC, Alves NJ, Trammell SA, Walper SA, Medintz IL, Claussen JC (2018) Printed graphene electrochemical biosensors fabricated by inkjet maskless lithography for rapid and sensitive detection of organophosphates. ACS Appl Mater Interfaces 10:11125–11134CrossRefGoogle Scholar
  22. 22.
    Pimenta GG, de Queiroz ME, Victor RP, Noronha LM, Neves AA, Oliveira AFD, Heleno FF (2017) DLLME-GC/ECD method for the residual analysis of parathion-methyl and its application in the study of the UV-Photodegradation process. J Braz Chem Soc 28:2045–2053Google Scholar
  23. 23.
    Chambers JE, Oppenheimer SF (2004) Organophosphates, serine esterase inhibition, and modeling of organophosphate toxicity. Toxicol Sci 77:185–187CrossRefGoogle Scholar
  24. 24.
    Lee DH, Lind PM, Jacobs DR Jr, Salihovic S, van Bavel B, Lind L (2016) Association between background exposure to organochlorine pesticides and the risk of cognitive impairment: a prospective study that accounts for weight change. Environ Int 89:179–184CrossRefGoogle Scholar
  25. 25.
    Karasali H, Maragou N (2016) “Pesticides and herbicides: Types of pesticide”. 319–325Google Scholar
  26. 26.
    Karthik R, Vinoth Kumar J, Chen SM, Kokulnathan T, Yang HY, Muthuraj V (2018) Design of Novel Ytterbium Molybdate Nano-flakes Anchored Carbon Nanofibers: a challenging sustainable catalyst for the detection and degradation of assassination weapon (Paraoxon-ethyl). ACS Sustain Chem Eng 6:8615–8630CrossRefGoogle Scholar
  27. 27.
    Wei M, Feng S (2017) Amperometric determination of organophosphate pesticides using a acetylcholinesterase based biosensor made from nitrogen-doped porous carbon deposited on a boron-doped diamond electrode. Microchim Acta 184:3461–3468CrossRefGoogle Scholar
  28. 28.
    Ye C, Zhong X, Wang MQ, Chai Y, Yuan R (2016) Cyclovoltammetric acetylcholinesterase activity assay after inhibition and subsequent reactivation by using a glassy carbon electrode modified with palladium nanorods composited with functionalized C60 fullerene. Microchim Acta 183:2403–2409CrossRefGoogle Scholar
  29. 29.
    Ullah I, Khan K, Sohail M, Ullah K, Ullah A, Shaheen S (2017) Synthesis, structural characterization and catalytic application of citrate-stabilized monometallic and bimetallic palladium@ copper nanoparticles in microbial anti-activities. Int J Nanomedicine 12:8735–8747CrossRefGoogle Scholar
  30. 30.
    Zhang C, Govindaraju S, Giribabu K, Huh YS, Yun K (2017) AgNWs-PANI nanocomposite based electrochemical sensor for detection of 4-nitrophenol. Sensors Actuators B Chem 252:616–623CrossRefGoogle Scholar
  31. 31.
    Chang MM, Ginjom IR, Ng SM (2017) Single-shot ‘turn-off’optical probe for rapid detection of paraoxon-ethyl pesticide on vegetable utilising fluorescence carbon dots. Sensors Actuators B Chem 242:1050–1056CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and BiotechnologyNational Taipei University of TechnologyTaipeiTaiwan, Republic of China
  2. 2.Institute of Organic and Polymeric MaterialsNational Taipei University of TechnologyTaipeiTaiwan, Republic of China
  3. 3.Institute of Organic and Polymeric MaterialsNational Taipei University of TechnologyTaipeiTaiwan, Republic of China
  4. 4.Battery Research Center of Green EnergyMing Chi University of TechnologyNew Taipei CityTaiwan, Republic of China

Personalised recommendations