Microchimica Acta

, 186:81 | Cite as

Amplification-free and direct fluorometric determination of telomerase activity in cell lysates using chimeric DNA-templated silver nanoclusters

  • Shi Ting Lee
  • Ruman Rahman
  • Kasturi Muthoosamy
  • Nur Aliana Hidayah Mohamed
  • XiaoDi Su
  • Saad Tayyab
  • Siu Yee NewEmail author
Original Paper


A fluorogenic probe has been developed for determination of telomerase activity using chimeric DNA-templated silver nanoclusters (AgNCs). The formation of AgNCs was investigated before (route A) and after (route B) telomerase elongation reaction. Both routes caused selective quenching of the yellow emission of the AgNCs (best measured at excitation/emission wavelength of 470/557 nm) in telomerase-positive samples. The quenching mechanism was studied using synthetically elongated DNA to mimic the telomerase-catalyzed elongation. The findings show that quenching is due to the formation of parallel G-quadruplexes with a –TTA– loop in the telomerase elongated products. The assay was validated using different cancer cell extracts, with intra- and interassay coefficients of variations of <9.8%. The limits of detection for MCF7, RPMI 2650 and HT29 cell lines are 15, 22 and 39 cells/μL. This represents a distinct improvement over the existing telomeric repeat amplification protocol (TRAP) assay in terms of time, sensitivity and cost.

Graphical Abstract

A method was developed using chimeric DNA-templated silver nanoclusters to detect telomerase activity directly in cell extracts. The sensitivity of this new method outperforms the traditional TRAP assay, and without the need for amplification.


Cancer probe AgNCs Biomarker Biosensor TRAP G-quadruplex Telomers MCF7 HT29 RPMI 2650 



The authors would like to acknowledge Dr. Eunice Ngai and Rayan Sabra for supplying MCF7 and HT29, respectively. This work is supported by Fundamental Research Grant Scheme (FRGS) for financial support via FRGS/2/2014/SG06/UNIM/02/1.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3194_MOESM1_ESM.docx (155 kb)
ESM 1 (DOCX 155 kb)


  1. 1.
    Fleisig HB, Wong JMY (2007) Telomerase as a clinical target: current strategies and potential applications. Exp Gerontol 42:102–112. CrossRefPubMedGoogle Scholar
  2. 2.
    Uziel O, Yosef N, Sharan R, Ruppin E, Kupiec M, Kushnir M, Beery E, Cohen-Diker T, Nordenberg J, Lahav M (2015) The effects of telomere shortening on cancer cells: a network model of proteomic and microRNA analysis. Genomics 105:5–16. CrossRefPubMedGoogle Scholar
  3. 3.
    Blackburn EH, Greider CW, Henderson E, Lee MS, Shampay J, Shippen-Lentz D (1989) Recognition and elongation of telomeres by telomerase. Genome 31:553–560. CrossRefPubMedGoogle Scholar
  4. 4.
    Blackburn EH, Chan SRWL (2004) Telomeres and telomerase. Philos Trans R Soc Lond B 359:109–121. CrossRefGoogle Scholar
  5. 5.
    Blackburn EH (1991) Structure and function of telomeres. Nature 350:569–573. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. Federation of European Biochemical Societies Letters 579:859–862.
  7. 7.
    Blackburn EH (2005) Telomerase and Cancer: Kirk a. Landon--AACR prize for basic cancer research lecture. Mol Cancer Res 3:477–482. CrossRefPubMedGoogle Scholar
  8. 8.
    Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015. CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang H, Wang Y, Wu M, Feng Q, Shi H, Chen HY, Xu JJ (2014) Visual electrochemiluminescence detection of telomerase activity based on multifunctional au nanoparticles modified with G-quadruplex deoxyribozyme and luminol. Chem Commun 50:12575–12577. CrossRefGoogle Scholar
  10. 10.
    Meng F, Xu Y, Dong W, Tang Y, Miao P (2018) A PCR-free voltammetric telomerase activity assay using a substrate primer on a gold electrode and DNA-triggered capture of gold nanoparticles. Microchim Acta 185:398–404. CrossRefGoogle Scholar
  11. 11.
    Ma C, Xia K, Chen H, Zeng W, Han R, Tang J (2012) Label-free highly sensitive detection of telomerase activity in cancer cell by chemiluminescence imaging. Mol Cell Probes 26:212–214. CrossRefPubMedGoogle Scholar
  12. 12.
    Wang L, Zhang Y, Zhang C (2013) Ultrasensitive detection of telomerase activity at the single-cell level. Anal Chem 85:11509–11517. CrossRefPubMedGoogle Scholar
  13. 13.
    Wang J, Wu L, Ren J, Qu X (2014) Visual detection of telomerase activity with a tunable dynamic range by using a gold nanoparticle probe-based hybridization protection strategy. Nanoscale 6:1661–1666. CrossRefPubMedGoogle Scholar
  14. 14.
    Wang J, Wu L, Ren J, Qu X (2012) Visualizing human telomerase activity with primer-modified au nanoparticles. Small 8:259–264. CrossRefPubMedGoogle Scholar
  15. 15.
    Yang Y, Li C, Hu X, Yang Y, Yin Y, Wang Z (2017) A programmed terminal extension strategy to light up multiple beacons for DNA and cellular telomerase detection. Chem Commun 53:5752–5755. CrossRefGoogle Scholar
  16. 16.
    Zheng G, Daniel WL, Mirkin CA (2008) A New approach to amplified telomerase detection with polyvalent oligonucleotide nanoparticle conjugates. J Am Chem Soc 130:9644–9645. CrossRefPubMedGoogle Scholar
  17. 17.
    Ding C, Li X, Ge Y, Zhang S (2010) Fluorescence detection of telomerase activity in cancer cells based on isothermal circular strand-displacement polymerization reaction. Anal Chem 82:2850–2855. CrossRefPubMedGoogle Scholar
  18. 18.
    Wang H, Wu S, Chu X, Yu RQ (2012) A sensitive fluorescence strategy for telomerase detection in cancer cells based on T7 exonuclease-assisted target recycling amplification. Chem Commun 48:5916–5918. CrossRefGoogle Scholar
  19. 19.
    Zhang X, Cheng R, Shi Z, Jin Y (2016) A PCR-free fluorescence strategy for detecting telomerase activity via double amplification strategy. Biosens Bioelectron 75:101–107. CrossRefPubMedGoogle Scholar
  20. 20.
    Chen C, Wei M, Liu Y, Xu E, Wei W, Zhang Y, Liu S (2017) Visual and fluorometric determination of telomerase activity by using a cationic conjugated polymer and fluorescence resonance energy transfer. Microchim Acta 184:3453–3460. CrossRefGoogle Scholar
  21. 21.
    Wang C, Wu J, Zong C, Xu J, Ju HX (2012) Chemiluminescent immunoassay and its applications. Chin J Anal Chem 40:3–10. CrossRefGoogle Scholar
  22. 22.
    Leung CH, Zhong HJ, Lu L, Chan DSH, Ma DL (2013) Luminescent and colorimetric strategies for the label-free DNA-based detection of enzyme activity. Briefing in Functional Genomics 12:525–535.
  23. 23.
    Syahir A, Usui K, Tomizaki K, Kajikawa K, Mihara H (2015) Label and label-free detection techniques for protein microarrays. Microarrays 4:228–244. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Xu Y, Zhang P, Wang Z, Lv S, Ding C (2018) Determination of the activity of telomerase in cancer cells by using BSA-protected gold nanoclusters as a fluorescent probe. Microchim Acta 185:198–204. CrossRefGoogle Scholar
  25. 25.
    Huang S, Yao H, Wang W, Zhang JR, Zhu JJ (2018) Highly sensitive fluorescent quantification of intracellular telomerase activity by repeat G-rich DNA enhanced silver nanocluster. J Mater Chem B 6:4583–4591. CrossRefGoogle Scholar
  26. 26.
    Li X, Wang W, Yang D, Wu J, Zhang B, Wu Z, Tang J (2018) Telomerase activity detection in Cancer cell via primer extension-mediated fluorescence enhancement of silver nanoclusters. Anal Methods 10:2138–2143. CrossRefGoogle Scholar
  27. 27.
    Yeh H, Sharma J, Han JJ, Martinez JS, Werner JH (2010) A DNA - silver nanocluster probe that fluoresces upon hybridization. Nano Lett 1:3106–3110. CrossRefGoogle Scholar
  28. 28.
    Lee ST, Beaumont D, Su XD, Muthoosamy K, New SY (2018) Formulation of DNA chimera templates: effects on emission behavior of silver nanoclusters and sensing. Anal Chim Acta 1010:62–68. CrossRefPubMedGoogle Scholar
  29. 29.
    Li J, Jia X, Li D, Ren J, Han Y, Xia Y, Wang E (2013) Stem-directed growth of highly fluorescent silver nanoclusters for versatile logic devices. Nanoscale 5:6131–6138. CrossRefPubMedGoogle Scholar
  30. 30.
    New SY, Lee ST, Su XD (2016) DNA-templated silver nanoclusters: structural correlation and fluorescence modulation. Nanoscale 8:17729–17746. CrossRefPubMedGoogle Scholar
  31. 31.
    Sengupta B, Ritchie CM, Buckman JG, Johnsen KR, Goodwin PM, Petty JT (2008) Base-directed formation of fluorescent silver clusters. J Phys Chem C 112:18776–18782CrossRefGoogle Scholar
  32. 32.
    Yau SH, Abeyasinghe N, Orr M, Upton L, Varnavski O, Werner JH, Yeh HC, Sharma J, Shreve AP, Martinez JS, Goodson T (2012) Bright two-photon emission and ultra-fast relaxation dynamics in a DNA-templated nanocluster investigated by ultra-fast spectroscopy. Nanoscale 4:4247–4254. CrossRefPubMedGoogle Scholar
  33. 33.
    Hsu HC, Ho MC, Wang KH, Hsu YF, Chang CW (2015) DNA stabilized silver nanoclusters as the fluorescent probe for studying the structural fluctuations and the solvation dynamics of human telomeric DNA. New J Chem 39:2140–2145. CrossRefGoogle Scholar
  34. 34.
    Yu J, Choi S, Dickson RM (2009) Shuttle-based fluorogenic silver-cluster biolabels. Angew Chem Int Ed 48:318–320. CrossRefGoogle Scholar
  35. 35.
    Petty JT, Story SP, Juarez S, Votto SS, Herbst AG, Degtyareva NN, Sengupta B (2012) Optical sensing by transforming Chromophoric silver clusters in DNA Nanoreactors. Anal Chem 84:356–364CrossRefGoogle Scholar
  36. 36.
    Ruttkay-Nedecky B, Skalickova S, Kremplova M, Nejdl L, Kudr J, Hynek D, Novotna M, Labuda J, Adam V, Kizek R (2014) Formation of G-quadruplex and its utilizing for an automated spectrometric detection of cisplatin. Int J Electrochem Sci 10:3973–3987Google Scholar
  37. 37.
    Lou X, Zhuang Y, Zuo X, Jia Y, Hong Y, Min X, Zhang Z, Xu X, Liu N, Xia F, Tang BZ (2015) Real-time, quantitative lighting-up detection of telomerase in urines of bladder Cancer patients by AIEgens. Anal Chem 87:6822–6827. CrossRefPubMedGoogle Scholar
  38. 38.
    Kypr J, Kejnovská I, Renčiuk D, Vorlíčková M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37:1713–1725. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Marchand A, Gabelica V (2016) Folding and misfolding pathways of G-quadruplex DNA. Nucleic Acids Res 44:10999–11012. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rehm C, Wurmthaler LA, Li Y, Frickey T, Hartig JS (2015) Investigation of a quadruplex-forming repeat sequence highly enriched in Xanthomonas and Nostoc sp. PLoS One 10:1–21. CrossRefGoogle Scholar
  41. 41.
    Jiang HX, Cui Y, Zhao T, Fu HW, Koirala D, Punnoose JA, Kong DM, Mao H (2015) Divalent cations and molecular crowding buffers stabilize G-triplex at physiologically relevant temperatures. Sci Rep 5:1–11. CrossRefGoogle Scholar
  42. 42.
    Tao G, Chen Y, Lin R, Zhou J, Pei X, Liu F, Li N (2018) How G-quadruplex topology and loop sequences affect optical properties of DNA-templated silver nanoclusters. Nano Res 11:2237–2247. CrossRefGoogle Scholar
  43. 43.
    Wu RA, Tam J, Collins K (2017) DNA-binding determinants and cellular thresholds for human telomerase repeat addition processivity. EMBO J 36:1908–1927. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kelleher C, Teixeira MT, Klaus F, Lingner J (2002) Telomerase : biochemical considerations for enzyme and substrate. Trends Biochem Sci 27:572–579. CrossRefPubMedGoogle Scholar
  45. 45.
    Zhu J, Zhang L, Teng Y, Lou B, Jia X, Gu X, Wang E (2015) G-quadruplex enhanced fluorescence of DNA-silver nanoclusters and their application in bioimaging. Nanoscale 7:13224–13229. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Pharmacy, Faculty of ScienceUniversity of Nottingham MalaysiaSemenyihMalaysia
  2. 2.Children’s Brain Tumour Research Centre (CBTRC), School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
  3. 3.Nanotechnology and Advanced Materials (NATAM), Faculty of EngineeringUniversity of Nottingham MalaysiaSemenyihMalaysia
  4. 4.Centre of Clinical Science, Faculty of DentistryUniversity of Technology MARA Sungai Buloh Campus, Jalan HospitalSelangorMalaysia
  5. 5.Institute of Materials Research and EngineeringSingaporeSingapore
  6. 6.Department of ChemistryNational University of SingaporeSingaporeSingapore
  7. 7.School of Science and EngineeringUniversity of the Sunshine CoastMaroochydore DCAustralia
  8. 8.Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations