Advertisement

Microchimica Acta

, 186:115 | Cite as

An electrochemical aptasensor for streptomycin based on covalent attachment of the aptamer onto a mesoporous silica thin film-coated gold electrode

  • Mahmoud RoushaniEmail author
  • Kazhal Ghanbari
Original Paper
  • 105 Downloads

Abstract

An electrochemical method is described for the determination of streptomycin (STR). It is making use of a gold electrode coated with a thin mesoporous silica film (MSF). In addition, silver nanoparticles were coated on the MSF to increase the surface area, to bind a large amount of aptamer (Apt), and to improve the electrical conductivity. In the presence of STR, it will bind to the Apt and hinder the diffusion of the redox probe hexacyanoferrate through the nanochannels of the mesoporous film. The aptasensor, best operated at a working potential of 0.22 V (vs. Ag/AgCl) has a linear response in the 1 fg.mL−1 to 6.2 ng.mL−1 STR concentration range. The detection limit is 0.33 fg.mL−1. The assay was successfully validated by analyzing spiked samples of milk and blood serum.

Graphical abstract

Voltammetric assay of streptomycin (STR) by using a Fe(CN)63−/4- probe. The aptamer was immobilized on a gold electrode modified with a mesoporous silica thin film (MSF) that was functionalized with (3-aminopropyl) triethoxysilane (APTES) and silver nanoparticles (AgNP). Incubation with STR leads to a decrease of the current.

Keywords

Silver nanoparticles Hexacyanoferrate Differential pulse voltammetry Tetraethoxysilane Cetyltrimethylammonium bromide 

Notes

Acknowledgments

The authors thank the Iran National Science Foundation (Grant no. 96015612) for their support.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3191_MOESM1_ESM.doc (1.2 mb)
ESM 1 (DOC 1.20 MB)

References

  1. 1.
    Pendela M, Hoogmartens J, Van Schepdael A, Adams E (2009) Streptomycin following desalting of a nonvolatile mobile phase and pH gradient. J Sep Sci 32:3418–3424CrossRefGoogle Scholar
  2. 2.
    Granja RHMM, Niño AMM, Zucchetti RAM, Niño REM, Patel R, Salerno AG (2009) Determination of streptomycin residues in honey by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 637:64–67CrossRefGoogle Scholar
  3. 3.
    De Oliveira RC, Rizzato Paschoal JA, Sismotto M, da Silva Airoldi FP, Reyes Reyes FG (2009) Development and validation of an LC-APCI-MS-MS analytical method for the determination of streptomycin and dihydrostreptomycin residues in milk. J Chromatogr Sci 47:756–761CrossRefGoogle Scholar
  4. 4.
    Zhou N, Wang J, Zhang J, Li C, Tian Y, Wang J (2013) Selection and identification of streptomycin-specific single-stranded DNA aptamers and the application in the detection of streptomycin in honey. Talanta 108:109–116CrossRefGoogle Scholar
  5. 5.
    Conzuelo F, Gamella M, Campuzano S, Pinacho G, Reviejo AJ, Marco MP, Pingarrón JM (2012) Disposable and integrated amperometric immunosensor for direct determination of sulfonamide antibiotics in milk. Biosens Bioelectron 36:81–88CrossRefGoogle Scholar
  6. 6.
    Mishra GK, Sharma A, Bhand S (2014) Ultrasensitive detection of streptomycin using flow injection analysis-electrochemical quartz crystal nanobalance (FIA-EQCN) biosensor. Biosens Bioelectron 67:532–539CrossRefGoogle Scholar
  7. 7.
    Knecht BG, Strasser A, Dietrich R, Märtlbauer E, Niessner R, Weller MG (2004) Automated microarray system for the simultaneous detection of antibiotics in Milk. Anal Chem 76:646–654CrossRefGoogle Scholar
  8. 8.
    Pastor-Navarro N, Maquieira A, Puchades R (2009) Review on immunoanalytical determination of tetracycline and sulfonamide residues in edible products. Anal Bioanal Chem 395:907–920CrossRefGoogle Scholar
  9. 9.
    Edder P, Cominoli A, Corvi C (1999) Determination of streptomycin residues in food by solid-phase extraction and liquid chromatography with post-column derivatization and fluorometric detection. J Chromatogr A 830:345–351CrossRefGoogle Scholar
  10. 10.
    McLaughlin LG, Henion JD, Kijak PJ (1994) Multi-residue confirmation of aminoglycoside antibiotics and bovine kidney by ion spray high-performance liquid chromatography/tandem mass spectrometry. Biol Mass Spectrom 23:417–429CrossRefGoogle Scholar
  11. 11.
    Gremilogianni AM, Megoulas NC, Koupparis MA (2010) Hydrophilic interaction vs ion pair liquid chromatography for the determination of streptomycin and dihydrostreptomycin residues in milk based on mass spectrometric detection. J Chromatogr A 1217:6646–6651CrossRefGoogle Scholar
  12. 12.
    Viñas P, Balsalobre N, Hernández-Córdoba M (2007) Liquid chromatography on an amide stationary phase with post-column derivatization and fluorimetric detection for the determination of streptomycin and dihydrostreptomycin in foods. Talanta 72:808–812CrossRefGoogle Scholar
  13. 13.
    Wen Y, Liao X, Deng C, Liu G, Yan Q, Li L, Wang X (2017) Imprinted voltammetric streptomycin sensor based on a glassy carbon electrode modified with electropolymerized poly (pyrrole-3-carboxy acid) and electrochemically reduced graphene oxide. Microchim Acta 184:935–941CrossRefGoogle Scholar
  14. 14.
    Soheili V, Taghdisi SM, Khayyat MH, Bazzaz BSF, Ramezani M, Abnous K (2016) Colorimetric and ratiometric aggregation assay for streptomycin using gold nanoparticles and a new and highly specific aptamer. Microchim Acta 183:1687–1697CrossRefGoogle Scholar
  15. 15.
    Danesh NM, Ramezani M, Emrani AS, Abnous K, Taghdis SM (2015) A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin. Biosens Bioelectron 15:123–128Google Scholar
  16. 16.
    Taghdisi SM, Danesh NM, Nameghi MA, Ramezani M, Abnous K (2016) A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum. Food Chem 203:145–149CrossRefGoogle Scholar
  17. 17.
    Yin J, Guo W, Qin X, Pei M, Wang L, Ding F (2016) A regular “signal attenuate on” electrochemical aptasensor for highly sensitive detection of streptomycin. New J Chem 40:9711–9718CrossRefGoogle Scholar
  18. 18.
    Ghanbari K, Roushani M (2018) A novel electrochemical aptasensor for highly sensitive and quantitative detection of the streptomycin antibiotic. Bioelectrochemistry 120:43–48CrossRefGoogle Scholar
  19. 19.
    Roushani M, Ghanbari K, Hoseini SJ (2018) Designing an electrochemical aptasensor based on immobilization of the aptamer onto nanocomposite for detection of the streptomycin antibiotic. Microchem J 141:96–103CrossRefGoogle Scholar
  20. 20.
    Ghanbari K, Roushani M, Azadbakht A (2017) Ultra-sensitive aptasensor based on a GQD nanocomposite for detection of hepatitis C virus core antigen. Anal Biochem 534:64–69CrossRefGoogle Scholar
  21. 21.
    Ghanbari K, Roushani M (2018) A nanohybrid probe based on double recognition of an aptamer MIP grafted onto a MWCNTs-chit nanocomposite for sensing hepatitis C virus core antigen. Sensors Actuators B Chem 258:1066–1071CrossRefGoogle Scholar
  22. 22.
    Shahdost-fard F, Roushani M (2016) Conformation switching of an aptamer based on cocaine enhancement on a surface of modified GCE. Talanta 154:7–14CrossRefGoogle Scholar
  23. 23.
    Roushani M, Valipour A (2016) Using electrochemical oxidation of Rutin in modeling a novel and sensitive immunosensor based on Pt nanoparticle and graphene–ionic liquid–chitosan nanocomposite to detect human chorionic gonadotropin. Sensors Actuators B Chem 222:1103–1111CrossRefGoogle Scholar
  24. 24.
    Valipour A, Roushani M (2017) Using silver nanoparticle and thiol graphene quantum dots nanocomposite as a substratum to load antibody for detection of hepatitis C virus core antigen: electrochemical oxidation of riboflavin was used as redox probe. Biosens Bioelectron 89:946–951CrossRefGoogle Scholar
  25. 25.
    Ogawa M (2001) Mesoporous silica films by supramolecular templating approach. Curr Top Colloid Interface Sci 4:209–217Google Scholar
  26. 26.
    Hasanzadeh M, Shadjou N, de la Guardia M, Eskandani M, Sheikhzadeh P (2012) Mesoporous silica-based materials for use in biosensors. Trends Anal Chem 33:117–129CrossRefGoogle Scholar
  27. 27.
    Lu J, Liu S, Ge S, Yan M, Yu J, Hua X (2012) Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube–graphene composite and functionalized mesoporous materials. Biosens Bioelectron 33:29–35CrossRefGoogle Scholar
  28. 28.
    Saadaoui M, Fernández I, Luna G, Díez P, Campuzano S, Raouafi N, Sánchez A, Pingarrón JM, Villalonga R (2016) Label-free electrochemical genosensor based on mesoporous silica thin film. Anal Bioanal Chem 408:7321–7327CrossRefGoogle Scholar
  29. 29.
    Ganguly A, Ahmad T, Ganguli K (2010) Silica mesostructures: control of pore size and surface area using a surfactant-templated hydrothermal process. Langmuir 26:14901–14908CrossRefGoogle Scholar
  30. 30.
    Chao KJ, Liu PH, Huang KY (2005) Thin films of mesoporous silica: characterization and applications. CR Chim 8:727–739CrossRefGoogle Scholar
  31. 31.
    Hoffmann F, Cornelius M, Morell J, Froeba M (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed Eng 45:3216–3251CrossRefGoogle Scholar
  32. 32.
    Walcarius A, Kuhn A (2008) Ordered porous thin films in electrochemical analysis. Trends Anal Chem 27:593–603CrossRefGoogle Scholar
  33. 33.
    Kao KC, Lin CH, Chen TY, Liu YH, Mou CY (2015) A general method for growing large area mesoporous silica thin films on flat substrates with perpendicular nanochannels. J Am Chem Soc 137:3779–3782CrossRefGoogle Scholar
  34. 34.
    Walcarius A, Sibottier E, Ghanbaja MEJ (2007) Electrochemically assisted self-assembly of mesoporous silica thin films. Nat Mater 6:602–608CrossRefGoogle Scholar
  35. 35.
    Argoubi W, Sánchez A, Parrado C, Raouafi N, Villalonga R (2018) Label-free electrochemical aptasensing platform based on mesoporous silica thin film for the detection of prostate specific antigen. Sensors Actuators B Chem 255:309–315CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesIlam UniversityIlamIran

Personalised recommendations