Microchimica Acta

, 186:79 | Cite as

Contrary logic pairs and circuits using a visually and colorimetrically detectable redox system consisting of MoO3-x nanodots and 3,3′-diaminobenzidine

  • Wei Huang
  • Jinhu Wang
  • Jiayan Du
  • Yuequan Deng
  • Yi HeEmail author
Original Paper


Logic systems that yield two or more signal outputs in the presence of the input are scarce. A universal logic system consisting of plasmonic MoO3-x nanodots and 3,3′-diaminobenzidine (DAB) for fabrication of visual contrary logic pairs and circuits are presented here. They do not require the use of expensive instrumentation but can be visually read. It is based on the facts that the blue dispersion of MoO3-x nanodots turns to colorless after oxidation, while the colorless reagent DAB is oxidized by various oxidants to generate a brown color. On this basis, the complete contrary logic pairs and circuits such as YES-NOT, AND-NAND, OR-NOR, XOR-XNOR, INH-IMH, and MAJ-MIN can be fabricated. Various oxidants serve as inputs, and absorbances as outputs. A smart logic voting system with “one-vote deny” function is also described that is based on the cascade of MAJ logic circuit and INH logic gate using ascorbic acid (AA) as the superior denier. All the logic operations can visually read due to the appearance of distinct color changes.

Graphical abstract

Schematic presentation of the contrary logic pairs and circuits using a visually and colorimetrically detectable redox system consisting of MoO3-x nanodots and 3,3′-diaminobenzidine.


MoO3-x nanomaterials Colorimetry Visualization Molecular computing Plasmonic switch One-vote deny Ascorbic acid Chromogenic substrate Oxidants Dual output logic gate 



The support of this research by the National Natural Science Foundation of China (Grant No. 21705134), Longshan academic talent research supporting program of SWUST (Grant No. 18LZX204 and 17LZX449), and Postgraduate Innovation Fund Project by Southwest University of Science and Technology (Grant No. 18ycx072) are gratefully acknowledged.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3190_MOESM1_ESM.doc (485 kb)
ESM 1 (DOC 485 kb)


  1. 1.
    Badeau BA, Comerford MP, Arakawa CK, Shadish JA, DeForest CA (2018) Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat Chem 10:251–258. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chen WH, Yu X, Cecconello A, Cecconello A, Sohn YS, Nechushtai R, Willner I (2017) Stimuli-responsive nucleic acid-functionalized metal-organic framework nanoparticles using pH-and metal-ion-dependent DNAzymes as locks. Chem Sci 8:5769–5780. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pu F, Ju E, Ren J, Qu X (2014) Multiconfigurable logic gates based on fluorescence switching in adaptive coordination polymer nanoparticles. Adv Mater 26:1111–1117. CrossRefPubMedGoogle Scholar
  4. 4.
    Wang L, Zhu J, Han L, Jin L, Zhu C, Wang E, Dong S (2012) Graphene-based aptamer logic gates and their application to multiplex detection. ACS Nano 6:6659–6666. CrossRefPubMedGoogle Scholar
  5. 5.
    Boulais É, Sawaya NP, Veneziano R, Andreoni A, Banal JL, Kondo T, Mandal S, Lin S, Schlau-Cohen GS, Woodbury NW (2018) Programmed coherent coupling in a synthetic DNA-based excitonic circuit. Nat Mater 17:159–166. CrossRefPubMedGoogle Scholar
  6. 6.
    Liu K, Shang C, Wang Z, Qi Y, Miao R, Liu K, Liu T, Fang Y (2018) Non-contact identification and differentiation of illicit drugs using fluorescent films. Nat Commun 9:1695. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lin X, Liu Y, Deng J, Lyu Y, Qian P, Li Y, Wang S (2018) Multiple advanced logic gates made of DNA-ag nanocluster and the application for intelligent detection of pathogenic bacterial genes. Chem Sci 9:1774–1781. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Li Y, Sun SJ, Fan L, Hu SF, Huang Y, Zhang K, Nie Z, Yao SZ (2017) Peptide logic circuits based on Chemoenzymatic ligation for programmable cell apoptosis. Angew Chem Int Ed 56:14888–14892. CrossRefGoogle Scholar
  9. 9.
    Zhou Y, Huang W, He Y (2018) pH-induced silver nanoprism etching-based multichannel colorimetric sensor array for ultrasensitive discrimination of thiols. Sensor Actuat B-Chem 270:187–191. CrossRefGoogle Scholar
  10. 10.
    Huang W, Zhou Y, Deng Y, He Y (2018) A negative feedback loop based on proton-driven in situ formation of plasmonic molybdenum oxide nanosheets. Phys Chem Chem Phys 20:4347–4350. CrossRefPubMedGoogle Scholar
  11. 11.
    De Silva PA, Gunaratne NHQ, Mccoy CP (1993) A molecular photoionic AND gate based on fluorescent signalling. Nature 364:42–44. CrossRefGoogle Scholar
  12. 12.
    Elstner M, Axthelm J, Schiller A (2014) Sugar-based molecular computing by material implication. Angew Chem Int Ed 53:7339–7343. CrossRefGoogle Scholar
  13. 13.
    Lilienthal S, Klein M, Orbach R, Willner I, Remacle F, Levine R (2017) Continuous variables logic via coupled automata using a DNAzyme cascade with feedback. Chem Sci 8:2161–2168. CrossRefPubMedGoogle Scholar
  14. 14.
    Erbas-Cakmak S, Kolemen S, Sedgwick AC, Gunnlaugsson T, James TD, Yoon J, Akkaya EU (2018) Molecular logic gates: the past, present and future. Chem Soc Rev 47:2228–2248. CrossRefPubMedGoogle Scholar
  15. 15.
    Turan IS, Gunaydin G, Ayan S, Akkaya EU (2018) Molecular demultiplexer as a terminator automaton. Nat Commun 9:805. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Thubagere AJ, Thachuk C, Berleant J, Johnson RF, Ardelean DA, Cherry KM, Qian L (2017) Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components. Nat Commun 8:14373. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Orbach R, Lilienthal S, Klein M, Levine RD, Remacle F, Willner I (2015) Ternary DNA computing using 3× 3 multiplication matrices. Chem Sci 6:1288–1292. CrossRefPubMedGoogle Scholar
  18. 18.
    Fan D, Wang E, Dong S (2017) An intelligent universal system yields double results with half the effort for engineering a DNA “contrary logic pairs” library and various DNA combinatorial logic circuits. Mater Horiz 4:924–931. CrossRefGoogle Scholar
  19. 19.
    Zhu J, Li T, Zhang L, Dong S, Wang E (2011) G-quadruplex DNAzyme based molecular catalytic beacon for label-free colorimetric logic gates. Biomater 32:7318–7324. CrossRefGoogle Scholar
  20. 20.
    Xianyu Y, Wang Z, Sun J, Wang X, Jiang X (2014) Colorimetric logic gates through molecular recognition and plasmonic nanoparticles. Small 10:4833–4838. CrossRefPubMedGoogle Scholar
  21. 21.
    Yu H, Long D, Huang W (2018) Organic antifreeze discrimination by pattern recognition using nanoparticle array. Sensor Actuat B-Chem 264:164–168. CrossRefGoogle Scholar
  22. 22.
    Huang W, Deng Y, He Y (2017) Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO2 nanosheets triggered multicolor chromogenic system. Biosens Bioelectron 91:89–94. CrossRefPubMedGoogle Scholar
  23. 23.
    Huang W, Zhou Y, Du J, Deng Y, He Y (2018) Versatile visual logic operations based on plasmonic switching in label-free molybdenum oxide nanomaterials. Anal Chem 90:2384–2388. CrossRefPubMedGoogle Scholar
  24. 24.
    Du J, Zhao M, Huang W, Deng Y, He Y (2018) Visual colorimetric detection of tin (II) and nitrite using a molybdenum oxide nanomaterial-based three-input logic gate. Anal Bioanal Chem 410:4519–4526. CrossRefPubMedGoogle Scholar
  25. 25.
    Roschzttardtz H, Grillet L, Isaure MP, Conejero G, Ortega R, Curie C, Mari S (2011) Plant cell nucleolus as a hot spot for iron. J Biol Chem 286:27863–27866. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Herzog V, Fahimi HD (1973) A new sensitive colorimetric assay for peroxidase using 3, 3′-diaminobenzidine as hydrogen donor. Anal Biochem 55:554–562. CrossRefPubMedGoogle Scholar
  27. 27.
    Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84. CrossRefGoogle Scholar
  28. 28.
    Enami S, Sakamoto Y, Colussi AJ (2014) Fenton chemistry at aqueous interfaces. P Natl Acad Sci U S A 111:623–628. CrossRefGoogle Scholar
  29. 29.
    Mailloux S, Guz N, Zakharchenko A, Minko S, Katz E (2014) Majority and minority gates realized in enzyme-biocatalyzed systems integrated with logic networks and interfaced with bioelectronic systems. J Phys Chem B118:6775–6784. CrossRefGoogle Scholar
  30. 30.
    Imre A, Csaba G, Ji L, Orlov A, Bernstein GW (2006) Majority logic gate for magnetic quantum-dot cellular automata. Science 311:205–208. CrossRefPubMedGoogle Scholar
  31. 31.
    Bezverkhyy I, Popova E, Geoffroy N, Herbst F, Bellat JP (2016) Preparation of magnetic composites of MIL-53 (Fe) or MIL-100 (Fe) via partial transformation of their framework into gamma-Fe2O3. J Mater Chem A 4:8141–8148. CrossRefGoogle Scholar
  32. 32.
    Badeau BA, Comerford MP, Arakawa CK, Shadish JA, DeForest CA (2004) Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat Chem 10:251–258. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Wei Huang
    • 1
  • Jinhu Wang
    • 2
  • Jiayan Du
    • 1
  • Yuequan Deng
    • 1
  • Yi He
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  2. 2.School of National Defence Science & TechnologySouthwest University of Science and TechnologyMianyangPeople’s Republic of China

Personalised recommendations