Microchimica Acta

, 186:72 | Cite as

A turn-on fluorescent probe for vitamin C based on the use of a silicon/CoOOH nanoparticle system

  • Qiujun Lu
  • Xiaogen Chen
  • Dan Liu
  • Cuiyan Wu
  • Meiling Liu
  • Haitao Li
  • Youyu ZhangEmail author
  • Shouzhuo Yao
Original Paper


The authors describe a fluorometric method for the turn-on determination of vitamin C (ascorbic acid). The blue fluorescence of silicon nanoparticles (SiNPs; with excitation/emission maxima at 350/450 nm) is found to be quenched by CoOOH nanoparticles (NPs). In the presence of vitamin C, the CoOOH NPs are decomposed by a redox reaction between the diol group of vitamin C and CoOOH NPs. As a result, fluorescence recovers. On the basis of this finding, a fluorometric method was designed for the turn-on detection of vitamin C. Under optimal conditions, the method has a low detection limit (0.47 μM) and a linear response in the 0.5 μM to 20 μM a concentration range. It was successfully applied to the determination of vitamin C in spiked red grape and orange juice, and in vitamin C tablets.

Graphical abstract

A target-triggered dissociation of quencher-based strategy for the fluorescence “turn-on” detection of vitamin C was developed. It is based on surface energy transfer (SET) and an inner filter effect (IFE) between silicon nanoparticles and CoOOH nanoparticles as well as the redox reaction between vitamin C and CoOOH nanoparticles.


Quenching Redox reaction Surface energy transfer Inner filter effect Silicon nanoparticles Fluorometry Stern-Volmer plot Fluorescence “turn-on” strategy Cobalt oxyhydroxide nanoparticles 



This work was supported by the National Natural Science Foundation of China (21475043, 21874042, and 21675051), Foundation of the Science & Technology Department of Hunan Province (2016SK2020), and Project funded by China Postdoctoral Science Foundation (2018 M640753).

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2018_3181_MOESM1_ESM.doc (152 kb)
ESM 1 (DOC 151 kb)


  1. 1.
    Carr A, Maggini S (2017) Vitamin C and immune function. Nutrients 9(11):1211CrossRefGoogle Scholar
  2. 2.
    Frei B, England L, Ames BN (1989) Ascorbate is an outstanding antioxidant in human blood plasma. P Natl Acad Sci 86(16):6377–6381CrossRefGoogle Scholar
  3. 3.
    Fritz H, Flower G, Weeks L, Cooley K, Callachan M, McGowan J, Skidmore B, Kirchner L, Seely D (2014) Intravenous vitamin C and cancer:a systematic review. Integr Cancer Ther 13(4):280–300CrossRefGoogle Scholar
  4. 4.
    Lane DJR, Richardson DR (2014) The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption! Free Radical Bio Med 75:69–83CrossRefGoogle Scholar
  5. 5.
    Linster CL, Van Schaftingen E (2007) Vitamin C. FEBS J 274(1):1–22CrossRefGoogle Scholar
  6. 6.
    Carpenter KJ (2012) The discovery of vitamin C. Ann Nutr Metab 61(3):259–264CrossRefGoogle Scholar
  7. 7.
    Spínola V, Llorent-Martínez EJ, Castilho PC (2014) Determination of vitamin C in foods: current state of method validation. J Chromatogr A 1369:2–17CrossRefGoogle Scholar
  8. 8.
    Maduraiveeran G, Sasidharan M, Ganesan V (2018) Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 103:113–129CrossRefGoogle Scholar
  9. 9.
    Yang P, Gao X, Wang L, Wu Q, Chen Z, Lin X (2014) Amperometric sensor for ascorbic acid based on a glassy carbon electrode modified with gold-silver bimetallic nanotubes in a chitosan matrix. Microchim Acta 181(1):231–238CrossRefGoogle Scholar
  10. 10.
    Huang W, Deng Y, He Y (2017) Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO2 nanosheets triggered multicolor chromogenic system. Biosens Bioelectron 91:89–94CrossRefGoogle Scholar
  11. 11.
    Hashmi MH, Adil AS, Viegas A, Ahmad I (1970) Microdetermination of ascorbic acid and tryptophan by colorimetry. Microchim Acta 58(3):457–462CrossRefGoogle Scholar
  12. 12.
    Liu S, Pang S (2018) A dual-model strategy for fluorometric determination of ascorbic acid and of ascorbic acid oxidase activity by using DNA-templated gold-silver nanoclusters. Microchim Acta 185(9):426CrossRefGoogle Scholar
  13. 13.
    Liu X, Na W, Liu H, Su X (2017) Fluorescence turn-off-on probe based on polypyrrole/graphene quantum composites for selective and sensitive detection of paracetamol and ascorbic acid. Biosens Bioelectron 98:222–226CrossRefGoogle Scholar
  14. 14.
    Chen X, Lu Q, Liu D, Wu C, Liu M, Li H, Zhang Y, Yao S (2018) Highly sensitive and selective determination of copper(II) based on a dual catalytic effect and by using silicon nanoparticles as a fluorescent probe. Microchim Acta 185(3):188CrossRefGoogle Scholar
  15. 15.
    Xu H, Gu B, Li Y, Huang Z, Su W, Duan X, Yin P, Li H, Yao S (2018) A highly selective, colorimetric and ratiometric fluorescent probe for NH2NH2 and its bioimaging. Talanta 180:199–205CrossRefGoogle Scholar
  16. 16.
    Liu Q, Lai Q, Li N, Su X (2018) Copper nanoclusters capped with tannic acid as a fluorescent probe for real-time determination of the activity of pyrophosphatase. Microchim Acta 185(3):182CrossRefGoogle Scholar
  17. 17.
    Na W, Hu T, Su X (2017) Turn-on fluorometric NADPH assay using orange emitting graphene oxide quantum dots. Microchim Acta 184(12):4571–4578CrossRefGoogle Scholar
  18. 18.
    Wang Y, Lu L, Peng H, Xu J, Wang F, Qi R, Xu Z, Zhang W (2016) Multi-doped carbon dots with ratiometric pH sensing properties for monitoring enzyme catalytic reactions. Chem Commun 52(59):9247–9250CrossRefGoogle Scholar
  19. 19.
    Jiang C, Shen Z, Luo C, Lin H, Huang R, Wang Y, Peng H (2016) One-pot aqueous synthesis of gadolinium doped CdTe quantum dots with dual imaging modalities. Talanta 155:14–20CrossRefGoogle Scholar
  20. 20.
    Li Q, Peng H, Wang J, Wang Y, Guo F (2015) Coexpression of CdSe and CdSe/CdS quantum dots in live cells using molecular hyperspectral imaging technology. J Biomed Opt 20(11):110504CrossRefGoogle Scholar
  21. 21.
    Lu Q, Zhao J, Xue S, Yin P, Zhang Y, Yao S (2015) A “turn-on” fluorescent sensor for ultrasensitive detection of melamine based on a new fluorescence probe and AuNPs. Analyst 140(4):1155–1160CrossRefGoogle Scholar
  22. 22.
    Xiao T, Sun J, Zhao J, Wang S, Liu G, Yang X (2018) FRET effect between fluorescent polydopamine nanoparticles and MnO2 nanosheets and its application for sensitive sensing of alkaline phosphatase. ACS Appl Mater Interfaces 10(7):6560–6569CrossRefGoogle Scholar
  23. 23.
    Zhao W, Brook MA, Li Y (2008) Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 9(15):2363–2371CrossRefGoogle Scholar
  24. 24.
    Feng Y, Liu Y, Su C, Ji X, He Z (2014) New fluorescent pH sensor based on label-free silicon nanodots. Sensors Actuators B Chem 203:795–801CrossRefGoogle Scholar
  25. 25.
    Wu QD, Gao XP, Li GR, Pan GL, Yan TY, Zhu HY (2007) Microstructure and electrochemical properties of Al-substituted nickel hydroxides modified with CoOOH nanoparticles. J Phys Chem C 111(45):17082–17087CrossRefGoogle Scholar
  26. 26.
    Wang J, Peng X, Li D, Jiang X, Pan Z, Chen A, Huang L, Hu J (2017) Ratiometric ultrasensitive fluorometric detection of ascorbic acid using a dually emitting CdSe@SiO2@CdTe quantum dot hybrid. Microchim Acta 185(1):42CrossRefGoogle Scholar
  27. 27.
    Mo Q, Liu F, Gao J, Zhao M, Shao N (2018) Fluorescent sensing of ascorbic acid based on iodine induced oxidative etching and aggregation of lysozyme-templated silver nanoclusters. Anal Chim Acta 1003:49–55CrossRefGoogle Scholar
  28. 28.
    Meng H, Yang D, Tu Y, Yan J (2017) Turn-on fluorescence detection of ascorbic acid with gold nanolcusters. Talanta 165:346–350CrossRefGoogle Scholar
  29. 29.
    Zhu L, Peng X, Li H, Zhang Y, Yao S (2017) On–off–on fluorescent silicon nanoparticles for recognition of chromium(VI) and hydrogen sulfide based on the inner filter effect. Sensors Actuators B Chem 238:196–203CrossRefGoogle Scholar
  30. 30.
    Lu Q, Chen X, Liu D, Wu C, Liu M, Li H, Zhang Y, Yao S (2018) Synergistic electron transfer effect-based signal amplification strategy for the ultrasensitive detection of dopamine. Talanta 182:428–432CrossRefGoogle Scholar
  31. 31.
    Braun G, Pavel I, Morrill AR, Seferos DS, Bazan GC, Reich NO, Moskovits M (2007) Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots. J Am Chem Soc 129(25):7760–7761CrossRefGoogle Scholar
  32. 32.
    Braun GB, Lee SJ, Laurence T, Fera N, Fabris L, Bazan GC, Moskovits M, Reich NO (2009) Generalized approach to SERS-active nanomaterials via controlled nanoparticle linking, polymer encapsulation, and small-molecule infusion. J Phys Chem C 113(31):13622–13629CrossRefGoogle Scholar
  33. 33.
    Chao M-R, Hu C-W, Chen J-L (2016) Fluorometric determination of copper(II) using CdTe quantum dots coated with 1-(2-thiazolylazo)-2-naphthol and an ionic liquid. Microchim Acta 183(4):1323–1332CrossRefGoogle Scholar
  34. 34.
    Lu Q, Deng J, Hou Y, Wang H, Li H, Zhang Y, Yao S (2015) Hydroxyl-rich C-dots synthesized by a one-pot method and their application in the preparation of noble metal nanoparticles. Chem Commun 51(33):7164–7167CrossRefGoogle Scholar
  35. 35.
    Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Qiujun Lu
    • 1
    • 2
  • Xiaogen Chen
    • 1
  • Dan Liu
    • 1
  • Cuiyan Wu
    • 1
  • Meiling Liu
    • 1
  • Haitao Li
    • 1
  • Youyu Zhang
    • 1
    Email author
  • Shouzhuo Yao
    • 1
  1. 1.Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical EngineeringHunan Normal UniversityChangshaPeople’s Republic of China
  2. 2.State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life ScienceHunan Normal UniversityChangshaPeople’s Republic of China

Personalised recommendations