Advertisement

Microchimica Acta

, 186:66 | Cite as

Fluorometric determination of pesticides and organophosphates using nanoceria as a phosphatase mimic and an inner filter effect on carbon nanodots

  • Jinchao Wei
  • Yu Yang
  • Jiayi Dong
  • Shuangpeng WangEmail author
  • Peng LiEmail author
Original Paper
  • 110 Downloads

Abstract

Nanoceria with a remarkable phosphatase mimicking activity was synthesized and used to catalyze the hydrolysis of phosphate esters in pH 10 solution. The catalytic effect of nanoceria was firstly investigated by selecting p-nitrophenyl phosphate as a model substrate. The pH value, incubation temperature, reaction time, and concentration of nanoceria were optimized. The catalytic effect was then confirmed by using methyl-paraoxon as a substrate. The p-nitrophenol anion released by the enzyme mimic is yellow and exerts an inner filter effect on the fluorescence of the carbon dots (with excitation/emission maxima at 400/520 nm). Response to methyl-paraoxon is linear in the 1.125–26.25 μmol L−1 concentration range. The method was applied to the determination of pesticides in spiked Panax quinquefolius and water samples. Recoveries ranged from 85 to 103% (n = 3). The technique is rapid, reliable, and can be used for on-site detection of pesticides and organophosphates.

Graphical abstract

Schematic presentation of a fluorometric technique for the detection of organophosphate compound and pesticide using nanoceria as a phosphatase mimic and an inner filter effect on the blue fluorescence of carbon dots (with excitation/emission maxima at 400/520 nm).

Keywords

Nanozyme Sensor Probe Nanomaterial Nanoparticle Fluorescence CeO2 Environmental pollution Water pollution 

Notes

Acknowledgments

We gratefully acknowledge the financial support from Macau Science and Technology Development Fund (162/2017/A3), and the Research Committee of the University of Macau (MYRG2018-00239-ICMS and MYRG2014-00089-ICMS-QRCM).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3175_MOESM1_ESM.docx (828 kb)
ESM 1 (DOCX 828 kb)

References

  1. 1.
    Svara J, Weferling N, Hofmann T (2006) Phosphorus compounds, organic. In: Ullmann's Encyclopedia of Industrial Chemistry. WileyGoogle Scholar
  2. 2.
    Berent S, Giordani B, Albers JW, Garabrant DH, Cohen SS, Garrison RP, Richardson RJ (2014) Effects of occupational exposure to chlorpyrifos on neuropsychological function: a prospective longitudinal study. Neurotoxicology 41:44–53.  https://doi.org/10.1016/j.neuro.2013.12.010 CrossRefPubMedGoogle Scholar
  3. 3.
    Deshpande LS, Blair RE, Phillips KF, DeLorenzo RJ (2016) Role of the calcium plateau in neuronal injury and behavioral morbidities following organophosphate intoxication. Ann N Y Acad Sci 1374(1):176–183.  https://doi.org/10.1111/nyas.13122 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dou XW, Chu XF, Kong WJ, Luo JY, Yang MH (2015) A gold-based nanobeacon probe for fluorescence sensing of organophosphorus pesticides. Anal Chim Acta 891:291–297.  https://doi.org/10.1016/j.aca.2015.08.012 CrossRefPubMedGoogle Scholar
  5. 5.
    Jurewicz J, Hanke W (2008) Prenatal and childhood exposure to pesticides and neurobehavioral development: review of epidemiological studies. Int J Occup Med Env 21(2):121–132.  https://doi.org/10.2478/v10001-008-0014-z CrossRefGoogle Scholar
  6. 6.
    Lerro CC, Koutros S, Andreotti G, Friesen MC, Alavanja MC, Blair A, Hoppin JA, Sandler DP, Lubin JH, Ma XM, Zhang YW, Freeman LEB (2015) Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the agricultural health study. Occup Environ Med 72(10):736–744.  https://doi.org/10.1136/oemed-2014-102798 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wei JC, Hu J, Cao JL, Wan JB, He CW, Hu YJ, Hu H, Li P (2016) Sensitive detection of organophosphorus pesticides in medicinal plants using ultrasound-assisted dispersive liquid-liquid microextraction combined with sweeping micellar Electrokinetic chromatography. J Agric Food Chem 64(4):932–940.  https://doi.org/10.1021/acs.jafc.5b05369 CrossRefPubMedGoogle Scholar
  8. 8.
    Wang XM, Ma XM, Wang H, Huang PF, Du XZ, Lu XQ (2017) A zinc(II) benzenetricarboxylate metal organic framework with unusual adsorption properties, and its application to the preconcentration of pesticides. Microchim Acta 184(10):3681–3687.  https://doi.org/10.1007/s00604-017-2382-1 CrossRefGoogle Scholar
  9. 9.
    Dargahi R, Ebrahimzadeh H, Alizadeh R (2018) Polypyrrole coated ZnO nanorods on platinum wire for solid-phase microextraction of amitraz and teflubenzuron pesticides prior to quantitation by GC-MS. Microchim Acta 185(2):150.  https://doi.org/10.1007/s00604-018-2692-y CrossRefGoogle Scholar
  10. 10.
    Songa EA, Okonkwo JO (2016) Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: a review. Talanta 155:289–304.  https://doi.org/10.1016/j.talanta.2016.04.046 CrossRefPubMedGoogle Scholar
  11. 11.
    Ren XL, Wei JF, Ren J, Qiang L, Tang FQ, Meng XW (2015) A sensitive biosensor for the fluorescence detection of the acetylcholinesterase reaction system based on carbon dots. Colloid Surface B 125:90–95.  https://doi.org/10.1016/j.colsurfb.2014.11.007 CrossRefGoogle Scholar
  12. 12.
    Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta 183(7):2063–2083.  https://doi.org/10.1007/s00604-016-1858-8 CrossRefGoogle Scholar
  13. 13.
    Yan X, Li HX, Wang XY, Su XG (2015) A novel fluorescence probing strategy for the determination of parathion-methyl. Talanta 131:88–94.  https://doi.org/10.1016/j.talanta.2014.07.032 CrossRefPubMedGoogle Scholar
  14. 14.
    Mayorga-Martinez CC, Pino F, Kurbanoglu S, Rivas L, Ozkan SA, Merkoci A (2014) Iridium oxide nanoparticle induced dual catalytic/inhibition based detection of phenol and pesticide compounds. J Mater Chem B 2(16):2233–2239.  https://doi.org/10.1039/c3tb21765e CrossRefGoogle Scholar
  15. 15.
    Meng XW, Wei JF, Ren XL, Ren J, Tang FQ (2013) A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosens Bioelectron 47:402–407.  https://doi.org/10.1016/j.bios.2013.03.053 CrossRefPubMedGoogle Scholar
  16. 16.
    Wu X, Wang SP, Li MX, Wang AQ, Zhou YY, Li P, Wang YT (2017) Nanocarriers for TRAIL delivery: driving TRAIL back on track for cancer therapy. Nanoscale 9(37):13879–13904.  https://doi.org/10.1039/c7nr04959e CrossRefPubMedGoogle Scholar
  17. 17.
    Vernekar AA, Das T, Mugesh G (2016) Vacancy-engineered Nanoceria: enzyme mimetic hotspots for the degradation of nerve agents. Angew Chem Int Ed 55(4):1412–1416.  https://doi.org/10.1002/anie.201510355 CrossRefGoogle Scholar
  18. 18.
    Amiri A, Saadati-Moshtaghin HR, Zonoz FM (2018) A hybrid material composed of a polyoxometalate of type BeW12O40 and an ionic liquid immobilized onto magnetic nanoparticles as a sorbent for the extraction of organophosphorus pesticides prior to their determination by gas chromatography. Microchim Acta 185(3):176.  https://doi.org/10.1007/s00604-018-2713-x CrossRefGoogle Scholar
  19. 19.
    Wang JT, Jiao CN, Li MH, Wang XL, Wang C, Wu QH, Wang Z (2018) Porphyrin based porous organic polymer modified with Fe3O4 nanoparticles as an efficient adsorbent for the enrichment of benzoylurea insecticides. Microchim Acta 185(1):36.  https://doi.org/10.1007/s00604-017-2542-3 CrossRefGoogle Scholar
  20. 20.
    Bagheri H, Amanzadeh H, Yamini Y, Masoomi MY, Morsali A, Salar-Amoli J, Hassan J (2018) A nanocomposite prepared from a zinc-based metal-organic framework and polyethersulfone as a novel coating for the headspace solid-phase microextraction of organophosphorous pesticides. Microchim Acta 185(1):62.  https://doi.org/10.1007/s00604-017-2607-3 CrossRefGoogle Scholar
  21. 21.
    Huang ZZ, Lee HK (2015) Micro-solid-phase extraction of organochlorine pesticides using porous metal-organic framework MIL-101 as sorbent. J Chromatogr A 1401:9–16.  https://doi.org/10.1016/j.chroma.2015.04.052 CrossRefPubMedGoogle Scholar
  22. 22.
    Ma JP, Yao ZD, Hou LW, Lu WH, Yang QP, Li JH, Chen LX (2016) Metal organic frameworks (MOFs) for magnetic solid-phase extraction of pyrazole/pyrrole pesticides in environmental water samples followed by HPLC-DAD determination. Talanta 161:686–692.  https://doi.org/10.1016/j.talanta.2016.09.035 CrossRefPubMedGoogle Scholar
  23. 23.
    Xie JX, Zhang XD, Wang H, Zheng HZ, Huang YM (2012) Analytical and environmental applications of nanoparticles as enzyme mimetics. Trac-Trend Anal Chem 39:114–129.  https://doi.org/10.1016/j.trac.2012.03.021 CrossRefGoogle Scholar
  24. 24.
    Wei H, Wang EK (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093.  https://doi.org/10.1039/c3cs35486e CrossRefPubMedGoogle Scholar
  25. 25.
    Xu C, Qu XG (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. Npg Asia Mater 6:e90.  https://doi.org/10.1038/am.2013.88 CrossRefGoogle Scholar
  26. 26.
    Celardo I, Pedersen JZ, Traversa E, Ghibelli L (2011) Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3(4):1411–1420.  https://doi.org/10.1039/c0nr00875c CrossRefPubMedGoogle Scholar
  27. 27.
    Liu BW, Sun ZY, Huang PJJ, Liu JW (2015) Hydrogen peroxide displacing DNA from Nanoceria: mechanism and detection of glucose in serum. J Am Chem Soc 137(3):1290–1295.  https://doi.org/10.1021/ja511444e CrossRefPubMedGoogle Scholar
  28. 28.
    Chen ZW, Zhao CQ, Ju EG, Ji HW, Ren JS, Binks BP, Qu XG (2016) Design of Surface-Active Artificial Enzyme Particles to stabilize Pickering emulsions for high-performance biphasic biocatalysis. Adv Mater 28(8):1682–1688.  https://doi.org/10.1002/adma.201504557 CrossRefPubMedGoogle Scholar
  29. 29.
    Janos P, Lovaszova I, Pfeifer J, Ederer J, Dosek M, Loucka T, Henych J, Kolska Z, Milde D, Opletal T (2016) Accelerated dephosphorylation of adenosine phosphates and related compounds in the presence of nanocrystalline cerium oxide. Environ Sci-Nano 3(4):847–856.  https://doi.org/10.1039/c6en00086j CrossRefGoogle Scholar
  30. 30.
    Manto MJ, Xie PF, Wang C (2017) Catalytic Dephosphorylation using ceria nanocrystals. ACS Catal 7(3):1931–1938.  https://doi.org/10.1021/acscata1.6b03472 CrossRefGoogle Scholar
  31. 31.
    Kaspar J, Fornasiero P, Graziani M (1999) Use of CeO2-based oxides in the three-way catalysis. Catal Today 50(2):285–298.  https://doi.org/10.1016/S0920-5861(98)00510-0 CrossRefGoogle Scholar
  32. 32.
    Wang L, Zhu SJ, Wang HY, Qu SN, Zhang YL, Zhang JH, Chen QD, Xu HL, Han W, Yang B, Sun HB (2014) Common origin of green luminescence in carbon Nanodots and graphene quantum dots. ACS Nano 8(3):2541–2547.  https://doi.org/10.1021/nn500368m CrossRefPubMedGoogle Scholar
  33. 33.
    Strauss V, Margraf JT, Dolle C, Butz B, Nacken TJ, Walter J, Bauer W, Peukert W, Spiecker E, Clark T, Guldi DM (2014) Carbon Nanodots: toward a comprehensive understanding of their photoluminescence. J Am Chem Soc 136(49):17308–17316.  https://doi.org/10.1021/ja510183c CrossRefPubMedGoogle Scholar
  34. 34.
    Yan FY, Jiang YX, Sun XD, Bai ZJ, Zhang Y, Zhou XG (2018) Surface modification and chemical functionalization of carbon dots: a review. Microchim Acta 185(9):424.  https://doi.org/10.1007/s00604-018-2953-9 CrossRefGoogle Scholar
  35. 35.
    Zhang J, Yu SH (2016) Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today 19(7):382–393.  https://doi.org/10.1016/j.mattod.2015.11.008 CrossRefGoogle Scholar
  36. 36.
    Zuo PL, Lu XH, Sun ZG, Guo YH, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183(2):519–542.  https://doi.org/10.1007/s00604-015-1705-3 CrossRefGoogle Scholar
  37. 37.
    Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14):1620–1636.  https://doi.org/10.1002/smll.201402648 CrossRefPubMedGoogle Scholar
  38. 38.
    Li GL, Fu HL, Chen XJ, Gong PW, Chen G, Xia L, Wang H, You JM, Wu YN (2016) Facile and sensitive fluorescence sensing of alkaline phosphatase activity with Photoluminescent carbon dots based on inner filter effect. Anal Chem 88(5):2720–2726.  https://doi.org/10.1021/acs.analchem.5b04193 CrossRefPubMedGoogle Scholar
  39. 39.
    Wang TY, Chen CY, Wang CM, Tan YZ, Liao WS (2017) Multicolor functional carbon dots via one-step refluxing synthesis. Acs Sensors 2(3):354–363.  https://doi.org/10.1021/acssensors.6b00607 CrossRefPubMedGoogle Scholar
  40. 40.
    Ding LH, Gong ZJ, Yan M, Yu JH, Song XR (2017) Determination of glucose by using fluorescent silicon nanoparticles and an inner filter caused by peroxidase-induced oxidation of o-phenylenediamine by hydrogen peroxide. Microchim Acta 184(11):4531–4536.  https://doi.org/10.1007/s00604-017-2445-3 CrossRefGoogle Scholar
  41. 41.
    Yoshii T, Onogi S, Shigemitsu H, Hamachi I (2015) Chemically reactive supramolecular hydrogel coupled with a signal amplification system for enhanced Analyte sensitivity. J Am Chem Soc 137(9):3360–3365.  https://doi.org/10.1021/ja5131534 CrossRefPubMedGoogle Scholar
  42. 42.
    Devadoss A, Sudhagar P, Terashima C, Nakata K, Fujishima A (2015) Photoelectrochemical biosensors: New insights into promising photoelectrodes and signal amplification strategies. J Photochem Photobiol C 24:43–63.  https://doi.org/10.1016/j.jphotochemrev.2015.06.002 CrossRefGoogle Scholar
  43. 43.
    Zhang WJ, Liu T, Huo FJ, Ning P, Meng XM, Yin CX (2017) Reversible Ratiometric fluorescent probe for sensing bisulfate/H2O2 and its application in zebrafish. Anal Chem 89(15):8079–8083.  https://doi.org/10.1021/acs.analchem.7b01580 CrossRefPubMedGoogle Scholar
  44. 44.
    Umezawa K, Yoshida M, Kamiya M, Yamasoba T, Urano Y (2017) Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics. Nat Chem 9(3):279–286.  https://doi.org/10.1038/Nchem.2648 CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang YJ, Guan LM, Yu H, Yan YH, Du LB, Liu Y, Sun MT, Huang DJ, Wang SH (2016) Reversible fluorescent probe for selective detection and cell imaging of oxidative stress Indicator bisulfite. Anal Chem 88(8):4426–4431.  https://doi.org/10.1021/acs.analchem.6b00061 CrossRefPubMedGoogle Scholar
  46. 46.
    Kaur A, Kolanowski JL, New EJ (2016) Reversible fluorescent probes for biological redox states. Angew Chem Int Ed 55(5):1602–1613.  https://doi.org/10.1002/anie.201506353 CrossRefGoogle Scholar
  47. 47.
    Kaewtong C, Wanno B, Uppa Y, Morakot N, Pulpoka B, Tuntulani T (2011) Facile synthesis of rhodamine-based highly sensitive and fast responsive colorimetric and off-on fluorescent reversible chemosensors for Hg2+: preparation of a fluorescent thin film sensor. Dalton T 40(46):12578–12583.  https://doi.org/10.1039/c1dt11307k CrossRefGoogle Scholar
  48. 48.
    Qian ZS, Chai LJ, Zhou Q, Huang YY, Tang C, Chen JR, Feng H (2015) Reversible fluorescent Nanoswitch based on carbon quantum dots Nanoassembly for real-time acid phosphatase activity monitoring. Anal Chem 87(14):7332–7339.  https://doi.org/10.1021/acs.analchem.5b01488 CrossRefPubMedGoogle Scholar
  49. 49.
    Hemmati M, Rajabi M, Asghari A (2018) Magnetic nanoparticle based solid-phase extraction of heavy metal ions: a review on recent advances. Microchim Acta 185(3):160.  https://doi.org/10.1007/s00604-018-2670-4 CrossRefGoogle Scholar
  50. 50.
    Herrero-Latorre C, Barciela-Garcia J, Garcia-Martin S, Pena-Crecente RM, Otarola-Jimenez J (2015) Magnetic solid-phase extraction using carbon nanotubes as sorbents: a review. Anal Chim Acta 892:10–26.  https://doi.org/10.1016/j.aca.2015.07.046 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacauChina
  2. 2.Institute of Applied Physics and Materials EngineeringUniversity of MacauMacauChina

Personalised recommendations