Advertisement

Microchimica Acta

, 186:83 | Cite as

Photodeposition of palladium nanoparticles on a porous gallium nitride electrode for nonenzymatic electrochemical sensing of glucose

  • Miaorong ZhangEmail author
  • Yuxiang Liu
  • Jiuxing Wang
  • Jianguo Tang
Original Paper
  • 160 Downloads

Abstract

A nonenzymatic electrochemical glucose sensor is described that was obtained by in situ photodeposition of high-density and uniformly distributed palladium nanoparticles (PdNPs) on a porous gallium nitride (PGaN) electrode. Cyclic voltammetric and chronoamperometric techniques were used to characterize the performance of the modified electrode toward glucose. In 0.1 M NaOH solution, it has two linear detection ranges, one from 1 μM to 1 mM, and another from 1 to 10 mM, and the detection limit is 1 μM. The electrode is repeatable, highly sensitive, fast and long-term stable. It was applied to the quantitation of serum glucose where it displayed accurate current responses.

Graphical abstract

A novel nonenzymatic electrochemical glucose sensor was developed by in situ photodeposition of palladium nanoparticles on the porous gallium nitride electrode.

Keywords

Gallium nitride Porous materials Palladium nanoparticles Photodeposition Electrochemical sensing Glucose detection 

Notes

Acknowledgements

I would like to take this opportunity to thank my doctoral supervisor Ge-Bo Pan, he is a very nice advisor. This work was supported by National Natural Science Foundation of China (51703104), Shandong Provincial Natural Science Foundation (ZR2017BEM035) and China Postdoctoral Science Foundation (2017 M612198).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3172_MOESM1_ESM.docx (470 kb)
ESM 1 (DOCX 470 kb)

References

  1. 1.
    Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825CrossRefGoogle Scholar
  2. 2.
    Sharma B, Bugga P, Madison LR, Henry AI, Blaber MG, Greeneltch NG, Chiang N, Mrksich M, Schatz GC, Van Duyne RP (2016) Bisboronic acids for selective, physiologically relevant direct glucose sensing with surface-enhanced Raman spectroscopy. J Am Chem Soc 138:13952–13959CrossRefGoogle Scholar
  3. 3.
    Liu L, Ma Q, Li Y, Liu Z, Su X (2015) A novel signal-off electrochemiluminescence biosensor for the determination of glucose based on double nanoparticles. Biosens Bioelectron 63:519–524CrossRefGoogle Scholar
  4. 4.
    Liu Q, Yang Y, Lv X, Ding Y, Zhang Y, Jing J, Xu C (2017) One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection. Sensors Actuators B Chem 240:726–734CrossRefGoogle Scholar
  5. 5.
    Zaidi SA, Shin JH (2016) Recent developments in nanostructure based electrochemical glucose sensors. Talanta 149:30–42CrossRefGoogle Scholar
  6. 6.
    Wang R, Liang X, Liu H, Cui L, Zhang X, Liu C (2018) Non-enzymatic electrochemical glucose sensor based on monodispersed stone-like PtNi alloy nanoparticles. Microchim Acta 185:339CrossRefGoogle Scholar
  7. 7.
    Zhao M, Gao Y, Sun J, Gao F (2015) Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots. Anal Chem 87:2615–2622CrossRefGoogle Scholar
  8. 8.
    Dhara K, Mahapatra DR (2018) Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim Acta 185:49CrossRefGoogle Scholar
  9. 9.
    Yang Z, Cao Y, Li J, Jian Z, Zhang Y, Hu X (2015) Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing. Anal Chim Acta 871:35–42CrossRefGoogle Scholar
  10. 10.
    Luo J, Zhao D, Yang M, Qu F (2018) Porous Ni3N nanosheet array as a catalyst for nonenzymatic amperometric etermination of glucose. Microchim Acta 185:229CrossRefGoogle Scholar
  11. 11.
    Wang S, Zhang L, Sun C, Shao Y, Wu Y, Lv J, Hao X (2016) Gallium nitride crystals: novel supercapacitor electrode materials. Adv Mater 28:3768–3776CrossRefGoogle Scholar
  12. 12.
    Williamson TL, Guo X, Zukoski A, Sood A, Díaz DJ, Bohn PW (2005) Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces. J Phys Chem B 109:20186–20191CrossRefGoogle Scholar
  13. 13.
    Yang C, Liu L, Zhu S, Yu Z, Xi X, Wu S, Cao H, Li J, Zhao L (2017) GaN with laterally aligned nanopores to enhance the water splitting. J Phys Chem C 121:7331–7336CrossRefGoogle Scholar
  14. 14.
    Li L, Mu X, Liu W, Kong X, Fan S, Mi Z, Li CJ (2014) Thermal non-oxidative aromatization of light alkanes catalyzed by gallium nitride. Angew Chem 126:14330–14333CrossRefGoogle Scholar
  15. 15.
    Zhang MR, Chen XQ, Pan GB (2016) The fabrication and photocatalysis of gold nanoparticles/porous GaN composite. ChemistrySelect 1:3159–3162CrossRefGoogle Scholar
  16. 16.
    Zhang MR, Pan GB (2017) Porous GaN electrode for anodic stripping voltammetry of silver(I). Talanta 165:540–544CrossRefGoogle Scholar
  17. 17.
    Zhang MR, Chen XQ, Pan GB (2017) Electrosynthesis of gold nanoparticles/porous GaN electrode for non-enzymatic hydrogen peroxide detection. Sensors Actuators B Chem 240:142–147CrossRefGoogle Scholar
  18. 18.
    Chinnadayyala SR, Park I, Cho S (2018) Nonenzymatic determination of glucose at near neutral pH values based on the use of nafion and platinum black coated microneedle electrode array. Microchim Acta 185:250CrossRefGoogle Scholar
  19. 19.
    Luo J, Zhao D, Yang M, Qu F (2018) Porous Ni3N nanosheet array as a catalyst for nonenzymatic amperometric determination of glucose. Microchim Acta 185:229CrossRefGoogle Scholar
  20. 20.
    Lu L, Kang J (2018) Amperometric nonenzymatic sensing of glucose at very low working potential by using a nanoporous PdAuNi ternary alloy. Microchim Acta 185:111CrossRefGoogle Scholar
  21. 21.
    Li W, Qi H, Wang B, Wang Q, Wei S, Zhang X, Wang Y, Zhang L, Cui X (2018) Ultrathin NiCo2O4 nanowalls supported on a 3D nanoporous gold coated needle for non-enzymatic amperometric sensing of glucose. Microchim Acta 185:124CrossRefGoogle Scholar
  22. 22.
    Foroughi F, Rahsepar M, Hadianfard MJ, Kim H (2018) Microwave-assisted synthesis of graphene modified CuO nanoparticles for voltammetric enzyme-free sensing of glucose at biological pH values. Microchim Acta 185:57CrossRefGoogle Scholar
  23. 23.
    Mehmeti E, Stanković DM, Chaiyo S, Zavasnik J, Žagar K, Kalcher K (2017) Wiring of glucose oxidase with graphene nanoribbons: an electrochemical third generation glucose biosensor. Microchim Acta 184:1127–1134CrossRefGoogle Scholar
  24. 24.
    Jewett SA, Makowski MS, Andrews B, Manfra MJ, Ivanisevic A (2012) Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides. Acta Biomater 8:728–733CrossRefGoogle Scholar
  25. 25.
    Tabrizi MA, Varkani JN (2014) Green synthesis of reduced graphene oxide decorated with gold nanoparticles and its glucose sensing application. Sensors Actuators B Chem 202:475–482CrossRefGoogle Scholar
  26. 26.
    Weremfo A, Fong STC, Khan A, Hibbert DB, Zhao C (2017) Electrochemically roughened nanoporous platinum electrodes for non-enzymatic glucose sensors. Electrochim Acta 231:20–26CrossRefGoogle Scholar
  27. 27.
    Cai Z, Liu C, Wu G, Chen X, Chen X (2013) Palladium nanoparticles deposit on multi-walled carbon nanotubes and their catalytic applications for electrooxidation of ethanol and glucose. Electrochim Acta 112:756–762CrossRefGoogle Scholar
  28. 28.
    Choi T, Kim SH, Lee CW, Kim H, Choi SK, Kim SH, Kim E, Park J, Kim H (2015) Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing. Biosens Bioelectron 63:325–330CrossRefGoogle Scholar
  29. 29.
    Lu L, Kang J (2018) Amperometric nonenzymatic sensing of glucose at very low working potential by using a nanoporous PdAuNi ternary alloy. Microchim Acta 185:111CrossRefGoogle Scholar
  30. 30.
    Wang J, Gao H, Sun F, Xu C (2014) Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide. Sensors Actuators B Chem 191:612–618CrossRefGoogle Scholar
  31. 31.
    Meng L, Jin J, Yang G, Lu T, Zhang H, Cai C (2009) Nonenzymatic electrochemical detection of glucose based on palladium–single-walled carbon nanotube hybrid nanostructures. Anal Chem 81:7271–7280CrossRefGoogle Scholar
  32. 32.
    Nayak P, Nair SP, Ramaprabhu S (2016) Enzyme-less and low-potential sensing of glucose using a glassy carbon electrode modified with palladium nanoparticles deposited on graphene-wrapped carbon nanotubes. Microchim Acta 183:1055–1062CrossRefGoogle Scholar
  33. 33.
    Zhang MR, Qin SJ, Peng HD, Pan GB (2016) Porous GaN photoelectrode fabricated by photo-assisted electrochemical etching using ionic liquid as etchant. Mater Lett 182:363–366CrossRefGoogle Scholar
  34. 34.
    Mijowska E, Onyszko M, Urbas K, Aleksandrzak M, Shi X, Moszyński D, Penkala K, Podolski J, Fray ME (2015) Palladium nanoparticles deposited on graphene and its electrochemical performance for glucose sensing. Appl Surf Sci 355:587–592CrossRefGoogle Scholar
  35. 35.
    Chen S, Wang LW (2012) Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem Mater 24:3659–3666CrossRefGoogle Scholar
  36. 36.
    Chen X, Lin Z, Chen DJ, Jia T, Cai Z, Wang X, Chen X, Chen G, Oyama M (2010) Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Biosens Bioelectron 25:1803–1808CrossRefGoogle Scholar
  37. 37.
    Lu LM, Li HB, Qu F, Zhang XB, Shen GL, Yu RQ (2011) In situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioelectron 26:3500–3504CrossRefGoogle Scholar
  38. 38.
    Sun Y, Buck H, Mallouk TE (2001) Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors. Anal Chem 73:1599–1604CrossRefGoogle Scholar
  39. 39.
    Wang Q, Cui X, Chen J, Zheng X, Liu C, Xue T, Wang H, Jin Z, Qiao L, Zheng W (2012) Well-dispersed palladium nanoparticles on graphene oxide as a non-enzymatic glucose sensor. RSC Adv 2:6245–6249CrossRefGoogle Scholar
  40. 40.
    Wittstock G, Strübing A, Szargan R, Werner G (1998) Glucose oxidation at bismuth-modified platinum electrodes. J Electroanal Chem 444:61–73CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and EngineeringQingdao UniversityQingdaoPeople’s Republic of China
  2. 2.College of Chemical EngineeringQingdao University of Science & TechnologyQingdaoPeople’s Republic of China

Personalised recommendations