Advertisement

Microchimica Acta

, 186:39 | Cite as

3D carbon nanosphere and gold nanoparticle-based voltammetric cytosensor for cell line A549 and for early diagnosis of non-small cell lung cancer cells

  • Huan Zhang
  • Hong Ke
  • Yinfang Wang
  • Pengwei Li
  • Chusen Huang
  • Nengqin JiaEmail author
Original Paper

Abstract

An electrochemical cytosensor for the detection of the non-small-cell lung cancer cell line A549 (NSCLC) had been developed. A microwave-hydrothermal method was employed to prepare monodisperse colloidal carbon nanospheres (CNSs). Gold nanoparticles (AuNPs) were placed on the surface of the colloidal CNSs by self-assembly to obtain 3D-structured microspheres of the type CNS@AuNP. The results of an MTT assay show the microspheres to possess good biocompatibility. The CNS@AuNP nanocomposite was then placed, in a chitosan film, on a glassy carbon electrode (GCE). The voltammetric signals and detection sensitivity are significantly enhanced owing to the synergistic effect of CNSs and AuNPs. A cytosensor was then obtained by immobilization of antibody against the carcinoembryonic antigen (which is a biomarker for NSCLC) on the GCE via crosslinking with glutaraldehyde. Hexacyanoferrate is used as an electrochemical probe, and the typical working voltage is 0.2 V (vs. SCE). If exposed to A549 cells, the differential pulse voltammetric signal decreases in the 4.2 × 10−1 to 4.2 × 10−6 cells mL−1 concentration range, and the detection limit is 14 cells mL−1 (at S/N = 3).

Graphical abstract

Schematic presentation of design strategy and fabrication process of the electrochemical cytosensor for A549 cells. (CNS: carbon nanospheres; GA: glutaraldehyde; PEI: polyethyleneimine; AuNPs: gold nanoparticles; BSA: Bovine serum albumin)

Keywords

Non-small-cell cancer A549 cell line Cytosensor CNS@AuNP Differential pulse voltammetry Carcinoembryonic antigen 

Notes

Acknowledgements

We sincerely appreciate the support from the National Natural Science Foundation of China (21373138), Shanghai Science and Technology Committee (17070503000), International Joint Laboratory on Resource Chemistry (IJLRC), Program for Changjiang Scholars and Innovative Research Team in University (IRT_16R49) and Science and Technology Innovation Foundation for College Students from Shanghai Normal University.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3160_MOESM1_ESM.doc (165 kb)
ESM 1 (DOC 165 kb)

References

  1. 1.
    Hammarström S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9(2):67–81CrossRefGoogle Scholar
  2. 2.
    Benchimol S, Fuks A, Jothy S, Beauchemin N, Shirota K, Stanners CP (1989) Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell 57(2):327–334CrossRefGoogle Scholar
  3. 3.
    De Jong C, Gordijn I, Kelder JC, Naaijkens B, Deneer VHM, Herder GJM P2.03b-094 Prognostic Value of Serum Carcinoembryonic Antigen during Conventional Chemotherapy in Advanced (Non-)Small Cell Lung Cancer. J Thorac Oncol 12(1):S993Google Scholar
  4. 4.
    Holdenrieder S, Wehnl B, Hettwer K, Simon K, Uhlig S, Dayyani F (2017) Carcinoembryonic antigen and cytokeratin-19 fragments for assessment of therapy response in non-small cell lung cancer: a systematic review and meta-analysis. Br J Cancer 116(8):1037–1045CrossRefGoogle Scholar
  5. 5.
    Maeda R, Suda T, Hachimaru A, Tochii D, Tochii S, Takagi Y (2017) Clinical significance of preoperative carcinoembryonic antigen level in patients with clinical stage IA non-small cell lung cancer. J Thorac Dis 9(1):176–186CrossRefGoogle Scholar
  6. 6.
    Cai Z (2016) Relationship between serum carcinoembryonic antigen level and epidermal growth factor receptor mutations with the influence on the prognosis of non-small-cell lung cancer patients. OncoTargets Ther 9:3873–3878CrossRefGoogle Scholar
  7. 7.
    Gao Y, Song P, Li H, Jia H, Zhang B (2017) Elevated serum CEA levels are associated with the explosive progression of lung adenocarcinoma harboring EGFR mutations. BMC Cancer 17(1):484CrossRefGoogle Scholar
  8. 8.
    Chewaskulyong B, Tanyakul P, Tantraworasin A P2.01–077 Serum CYFRA 21-1 and CEA Level as a Predicting Marker for Advanced Non-Small Cell Lung Cancer. J Thorac Oncol 12(1):S834–S835Google Scholar
  9. 9.
    Quyen TTB, Chang CC, Su WN, Uen YH, Pan CJ, Liu JY, Rick J, Lin KY, Hwang BJ (2014) Self-focusing au@ SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection. J Mater Chem B 2(6):629–636CrossRefGoogle Scholar
  10. 10.
    Gao YS, Zhu XF, Xu JK, Lu LM, Wang WM, Yang TT, Xing HK, Yu YF (2016) Label-free electrochemical immunosensor based on Nile blue A-reduced graphene oxide nanocomposites for carcinoembryonic antigen detection. Anal Biochem 500:80–87CrossRefGoogle Scholar
  11. 11.
    Qin W, Wang K, Xiao K, Hou Y, Lu W, Xu H, Wo Y, Feng S, Cui D (2017) Carcinoembryonic antigen detection with “handing”-controlled fluorescence spectroscopy using a color matrix for point-of-care applications. Biosens Bioelectron 90:508–515CrossRefGoogle Scholar
  12. 12.
    Yang L, Zhu W, Ren X, Khan MS, Zhang Y, Du B, Wei Q (2017) Macroporous graphene capped Fe3O4 for amplified electrochemiluminescence immunosensing of carcinoembryonic antigen detection based on CeO2@TiO2. Biosens Bioelectron 91:842–848CrossRefGoogle Scholar
  13. 13.
    Wang H, Wang Y, Zhang Y, Wang Q, Ren X, Wu D, Wei Q (2016) Photoelectrochemical Immunosensor for Detection of Carcinoembryonic Antigen Based on 2D TiO2 Nanosheets and Carboxylated Graphitic Carbon Nitride. 6:27385Google Scholar
  14. 14.
    Gao W, Huang T, Yuan H, Yang J, Jin Q, Jia C, Mao G, Zhao J (2018) Highly sensitive detection and mutational analysis of lung cancer circulating tumor cells using integrated combined immunomagnetic beads with a droplet digital PCR chip. Talanta 185:229–236CrossRefGoogle Scholar
  15. 15.
    Liu GL, Liu X, Lv XB, Wang XP, Fang XS, Sang Y (2014) miR-148b functions as a tumor suppressor in non-small cell lung cancer by targeting carcinoembryonic antigen (CEA). Int J Clin Exp Med 7(8):1990–1999PubMedPubMedCentralGoogle Scholar
  16. 16.
    Milano A, Mazzetta F, Valente S, Ranieri D, Leone L, Botticelli A, Onesti CE, Lauro S, Raffa S, Torrisi MR, Marchetti P (2018) Molecular detection of EMT markers in circulating tumor cells from metastatic nonsmall cell lung Cancer patients: potential role in clinical practice. Anal Cell Pathol: Cell Oncol 2018:1–12CrossRefGoogle Scholar
  17. 17.
    Zhang X, Xiao C (2018) Ultrasonic diagnosis combined with targeted ultrasound contrast agent improves diagnostic sensitivity of ultrasonic for non-small cell lung cancer patients. Exp Ther Med 16(2):908–916PubMedPubMedCentralGoogle Scholar
  18. 18.
    Sharp A, Bhosle J, Abdelraouf F, Popat S, O'Brien M, Yap TA (2016) Development of molecularly targeted agents and immunotherapies in small cell lung cancer. Eur J Cancer 60:26–39CrossRefGoogle Scholar
  19. 19.
    Mountzios G, Linardou H, Kosmidis P (2016) Immunotherapy in non-small cell lung cancer: the clinical impact of immune response and targeting. Ann Transl Med 4(14):268CrossRefGoogle Scholar
  20. 20.
    Liu HH, Wang X, Dong L, Wu Q, Liao Z, Stevens CW, Guerrero TM, Komaki R, Cox JD, Mohan R (2004) Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non–small-cell lung cancer. Int J Radiat Oncol Biol Phys 58(4):1268–1279CrossRefGoogle Scholar
  21. 21.
    Dervisevic M, Senel M, Sagir T, Isik S (2017) Highly sensitive detection of cancer cells with an electrochemical cytosensor based on boronic acid functional polythiophene. Biosens Bioelectron 90:6–12CrossRefGoogle Scholar
  22. 22.
    Yadegari A, Omidi M, Yazdian F, Zali H, Tayebi L (2017) An electrochemical cytosensor for ultrasensitive detection of cancer cells using modified graphene-gold nanostructures. RSC Adv 7(4):2365–2372CrossRefGoogle Scholar
  23. 23.
    Zhong S-L, Zhuang J, Yang D-P, Tang D (2017) Eggshell membrane-templated synthesis of 3D hierarchical porous au networks for electrochemical nonenzymatic glucose sensor. Biosens Bioelectron 96:26–32CrossRefGoogle Scholar
  24. 24.
    Song X, Gunawan P, Jiang R, Leong SSJ, Wang K, Xu R (2011) Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions. J Hazard Mater 194:162–168CrossRefGoogle Scholar
  25. 25.
    Sun X, Li Y (2004) Colloidal carbon spheres and their Core/Shell structures with Noble-metal nanoparticles. Angew Chem Int Ed 43(5):597–601CrossRefGoogle Scholar
  26. 26.
    Cui R, Liu C, Shen J, Gao D, Zhu J-J, Chen H-Y (2008) Gold nanoparticle–colloidal carbon Nanosphere hybrid material: preparation, characterization, and application for an amplified electrochemical immunoassay. Adv Funct Mater 18(15):2197–2204CrossRefGoogle Scholar
  27. 27.
    Du D, Zou Z, Shin Y, Wang J, Wu H, Engelhard MH, Liu J, Aksay IA, Lin Y (2010) Sensitive Immunosensor for Cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon Nanospheres. Anal Chem 82(7):2989–2995CrossRefGoogle Scholar
  28. 28.
    Qian T, Yu C, Zhou X, Ma P, Wu S, Xu L, Shen J (2014) Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes. Biosens Bioelectron 58:237–241CrossRefGoogle Scholar
  29. 29.
    Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13(18):1389–1393CrossRefGoogle Scholar
  30. 30.
    Xia H, Bai S, Hartmann J, Wang D (2010) Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver(I)-assisted citrate reduction. Langmuir 26(5):3585–3589CrossRefGoogle Scholar
  31. 31.
    Sasco AJ, Secretan MB, Straif K (2004) Tobacco smoking and cancer: a brief review of recent epidemiological evidence. Lung Cancer 45:S3–S9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Huan Zhang
    • 1
  • Hong Ke
    • 1
  • Yinfang Wang
    • 1
  • Pengwei Li
    • 1
  • Chusen Huang
    • 1
  • Nengqin Jia
    • 1
    Email author
  1. 1.The Education Ministry Key Laboratory of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of ChemistryShanghai Normal UniversityShanghaiChina

Personalised recommendations