Microchimica Acta

, 186:34 | Cite as

Double amplified colorimetric detection of DNA using gold nanoparticles, enzymes and a catalytic hairpin assembly

  • Chanho Park
  • Hyunjun Park
  • Hye Jin Lee
  • Hye Sun Lee
  • Kyong Hwa Park
  • Chang-Hwan Choi
  • Sungsoo Na
Original Paper


The authors describe an isothermal and ultrasensitive colorimetric DNA assay that consists of two amplification stages using enzymes and a catalytic hairpin assembly (CHA). The first step consists in the selective amplification of DNA using Klenow fragment and nicking enzyme. The second step consists in the amplification of the optical signal by using a catalytic hairpin assembly. After two amplification steps, the DNA reaction induces the aggregation of the red gold nanoparticles to give a blue color shift. The degree of aggregation can be quantified by measurement of the ratio of the UV-vis absorbances of the solutions at 620 and 524 nm which are the wavelengths of the aggregated gold nanoparticles and bare gold nanoparticles. The detection limit is as low as 3.1 fM. Due to the use of a specific enzyme, only the desired DNAs will be detected. The method can be applied to the determination of DNA of various lengths. Despite the presence of large amounts of wildtype DNA, it can readily detect a target DNA. Conceivably, the technique has a large potential because of its high sensitivity and selectivity.

Graphical abstract

Schematic presentation of DNA detection using gold nanoparticles (AuNP), enzymes and catalytic hairpin assembly (CHA). Effective DNA detection is achieved through the aggregation of AuNPs which is caused by DNA amplification using enzymes and signal amplification using CHA.


Klenow fragment DNA sensor AuNPs UV-vis absorbance CHA Hairpin DNA Liquid biopsy 



This study was supported by the National Research Foundation of Korea (NRF) under grant numbers of NRF-2016R1A5A1010148, NRF-2015M3A9D7031026 and funded by the Ministry of Science, ICT & Future Planning. C. Park and H. Park contributed equally to this work.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3154_MOESM1_ESM.docx (342 kb)
ESM 1 (DOCX 341 kb)


  1. 1.
    Jang K, Choi J, Park C, Na S (2017) Label-free and high-sensitive detection of Kirsten rat sarcoma viral oncogene homolog and epidermal growth factor receptor mutation using kelvin probe force microscopy. Biosens Bioelectron 87:222–228. CrossRefGoogle Scholar
  2. 2.
    Yatabe Y, Hida T, Horio Y, Kosaka T, Takahashi T, Mitsudomi T (2006) A rapid, sensitive assay to detect EGFR mutation in small biopsy specimens from lung Cancer. The Journal of Molecular Diagnostics 8(3):335–341. CrossRefPubMedGoogle Scholar
  3. 3.
    Dena M, Kelly B, Anand K, Madelyn SL, Michael M, Franziska B, Katharina V, Daniel L, Jorge N, Lyudmila B, Andrew HK, Korn WM, Ethan S, Michael C, Xing Y, Thomas M, Rachelle L, Meghana H, Craig Y, Joshua K, Yelena P, Devin S, David N, Peter K (2012) Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys Biol 9(1):016003CrossRefGoogle Scholar
  4. 4.
    Marco W, Lyudmila B, Rogier B, Anand K, Meghana H, Edward HC, Dena M, Ajay S, Anthony P, Patricia T, Kelly B, Jorge N, Michel van den H, Peter K (2012) Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: a glimpse into lung cancer biology. Phys Biol 9(1):016005CrossRefGoogle Scholar
  5. 5.
    Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Le Corre D, Li X, Atochin I, Link DR, Griffiths AD, Pallier K, Blons H, Bouché O, Landi B, Hutchison JB, Laurent-Puig P (2013) Multiplex Picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal Cancer patients. Clin Chem 59(12):1722–1731. CrossRefPubMedGoogle Scholar
  6. 6.
    Tuononen K, Mäki-Nevala S, Sarhadi VK, Wirtanen A, Rönty M, Salmenkivi K, Andrews JM, Telaranta-Keerie AI, Hannula S, Lagström S, Ellonen P, Knuuttila A, Knuutila S (2013) Comparison of targeted next-generation sequencing (NGS) and real-time PCR in the detection of EGFR, KRAS, and BRAF mutations on formalin-fixed, paraffin-embedded tumor material of non-small cell lung carcinoma—superiority of NGS. Genes Chromosom Cancer 52(5):503–511. CrossRefPubMedGoogle Scholar
  7. 7.
    Richardson AL, Iglehart JD (2012) BEAMing up personalized medicine: mutation detection in blood. Clin Cancer Res 18(12):3209–3211. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Xu X-W, Weng X-H, Wang C-L, Lin W-W, Liu A-L, Chen W, Lin X-H (2016) Detection EGFR exon 19 status of lung cancer patients by DNA electrochemical biosensor. Biosens Bioelectron 80:411–417. CrossRefPubMedGoogle Scholar
  9. 9.
    Wu C-C, Ko F-H, Yang Y-S, Hsia D-L, Lee B-S, Su T-S (2009) Label-free biosensing of a gene mutation using a silicon nanowire field-effect transistor. Biosens Bioelectron 25(4):820–825. CrossRefPubMedGoogle Scholar
  10. 10.
    Liu Q, Yin Lim S, Soo RA, Kyoung Park M, Shin Y (2015) A rapid MZI-IDA sensor system for EGFR mutation testing in non-small cell lung cancer (NSCLC). Biosens Bioelectron 74:865–871. CrossRefPubMedGoogle Scholar
  11. 11.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with Single Base imperfections using gold nanoparticle probes. J Am Chem Soc 120(9):1959–1964. CrossRefGoogle Scholar
  13. 13.
    Zhao W, Lam JCF, Chiuman W, Brook MA, Li Y (2008) Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors. Small 4(6):810–816. CrossRefPubMedGoogle Scholar
  14. 14.
    Ma H, Li Z, Xue N, Cheng Z, Miao X (2018) A gold nanoparticle based fluorescent probe for simultaneous recognition of single-stranded DNA and double-stranded DNA. Microchim Acta 185(2):93CrossRefGoogle Scholar
  15. 15.
    Zeng Y, Zhang D, Qi P, Zheng L (2017) Colorimetric detection of DNA by using target catalyzed DNA nanostructure assembly and unmodified gold nanoparticles. Microchim Acta 184(12):4809–4815CrossRefGoogle Scholar
  16. 16.
    Liang C, Chu Y, Cheng S, Wu H, Kajiyama T, Kambara H, Zhou G (2012) Multiplex loop-mediated isothermal amplification detection by sequence-based barcodes coupled with nicking endonuclease-mediated pyrosequencing. Anal Chem 84(8):3758–3763. CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang Y, Hu J, C-y Z (2012) Sensitive detection of transcription factors by isothermal exponential amplification-based colorimetric assay. Anal Chem 84(21):9544–9549. CrossRefPubMedGoogle Scholar
  18. 18.
    Zhao Y, Chen F, Wu Y, Dong Y, Fan C (2013) Highly sensitive fluorescence assay of DNA methyltransferase activity via methylation-sensitive cleavage coupled with nicking enzyme-assisted signalamplification. Biosens Bioelectron 42:56–61. CrossRefPubMedGoogle Scholar
  19. 19.
    Cui L, Ke G, Zhang WY, Yang CJ (2011) A universal platform for sensitive and selective colorimetric DNA detection based on Exo III assisted signal amplification. Biosens Bioelectron 26(5):2796–2800. CrossRefPubMedGoogle Scholar
  20. 20.
    Xu W, Xue X, Li T, Zeng H, Liu X (2009) Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew Chem Int Ed 48(37):6849–6852. CrossRefGoogle Scholar
  21. 21.
    Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101(43):15275–15278. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Park C, Song Y, Jang K, Choi C-H, Na S (2018) Target switching catalytic hairpin assembly and gold nanoparticle colorimetric for EGFR mutant detection. Sensors Actuators B Chem 261:497–504. CrossRefGoogle Scholar
  23. 23.
    Li B, Jiang Y, Chen X, Ellington AD (2012) Probing spatial organization of DNA strands using enzyme-free hairpin assembly circuits. J Am Chem Soc 134(34):13918–13921. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zheng A-X, Li J, Wang J-R, Song X-R, Chen G-N, Yang H-H (2012) Enzyme-free signal amplification in the DNAzyme sensor via target-catalyzed hairpin assembly. Chem Commun 48(25):3112–3114CrossRefGoogle Scholar
  25. 25.
    Xu F, Dong H, Cao Y, Lu H, Meng X, Dai W, Zhang X, Al-Ghanim KA, Mahboob S (2016) Ultrasensitive and multiple disease-related MicroRNA detection based on tetrahedral DNA nanostructures and duplex-specific nuclease-assisted signal amplification. ACS Appl Mater Interfaces 8(49):33499–33505. CrossRefPubMedGoogle Scholar
  26. 26.
    Yang W, Zhou X, Zhao J, Xu W (2018) A cascade amplification strategy of catalytic hairpin assembly and hybridization chain reaction for the sensitive fluorescent assay of the model protein carcinoembryonic antigen. Microchim Acta 185(2):100. CrossRefGoogle Scholar
  27. 27.
    Yue S, Zhao T, Qi H, Yan Y, Bi S (2017) Cross-catalytic hairpin assembly-based exponential signal amplification for CRET assay with low background noise. Biosens Bioelectron 94:671–676. CrossRefPubMedGoogle Scholar
  28. 28.
    Zhuang J, Lai W, Chen G, Tang D (2014) A rolling circle amplification-based DNA machine for miRNA screening coupling catalytic hairpin assembly with DNAzyme formation. Chem Commun 50(22):2935–2938. CrossRefGoogle Scholar
  29. 29.
    Pantel K, Alix-Panabières C (2013) Real-time liquid biopsy in Cancer patients: fact or fiction? Cancer Res 73:6384–6388. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKorea UniversitySeoulRepublic of Korea
  2. 2.Division of Oncology/Hematology, Department of Internal MedicineKorea UniversitySeoulSouth Korea
  3. 3.Department of Mechanical EngineeringStevens Institute of TechnologyHobokenUSA

Personalised recommendations