Microchimica Acta

, 186:16 | Cite as

Silver nanoclusters functionalized with Ce(III) ions are a viable “turn-on-off” fluorescent probe for sulfide

  • Jinshui LiuEmail author
  • Huijuan Bao
  • Dik-Lung MaEmail author
  • Chung-Hang Leung
Original Paper


The authors show that silver nanoclusters functionalized with Ce(III) ions are a viable fluorescent probe for selective and sensitive detection of sulfide at pH 7.0. The blue fluorescence of silver nanoclusters (with excitation/emission peaks at 358/426 nm) is enhanced on the addition of Ce(III) ions but is quenched in the presence of a trace concentrations of sulfide. A fluorometric assay was worked out using the Ce(III)/AgNCs as the probe. Sulfide can be detected in concentrations up to 2.0 μM, and the detection limit is 15 nM. The method was successfully applied to the determination of sulfide in spiked real samples.

Graphical abstract

Silver nanoclusters functionalized with Ce(III) ions are a viable “turn-on-off” fluorescent probe for selective and sensitive detection of sulfide at pH 7.0.


Fluorescence Nanoclusters Fluorescence quenching Sulfide probe Nanomaterial Glutathione Etching method 



This work was supported by the Natural Science Foundation of Anhui Province, China (1708085 MB48) and the National Natural Science Foundation of China (21205002).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3149_MOESM1_ESM.doc (1 mb)
ESM 1 (DOC 1043 kb)


  1. 1.
    Tang L, Cai M, Huang Z, Zhong K, Hou S, Bian Y, Nandhakumar R (2013) Rapid and highly selective relay recognition of Cu(II) and sulfide ions by a simple benzimidazole-based fluorescent sensor in water. Sensors Actuat B: Chem 185:188–194CrossRefGoogle Scholar
  2. 2.
    Li K-B, Jia W-P, Han D-M, Liang D-X, He X-P, Chen G-R (2017) Fluorogenic bis-triazolyl galactoprobe–metal complex for full-aqueous analysis of sulfide ion. Sensors Actuat B: Chem 246:197–201CrossRefGoogle Scholar
  3. 3.
    Ko C-N, Yang C, Lin S, Li S, Dong Z, Liu J, Lee SM-Y, Leung C-H, Ma D-L (2017) A long-lived phosphorescence iridium(III) complex as a switch on-off-on probe for live zebrafish monitoring of endogenous sulfide generation. Biosens Bioelectron 94:575–583CrossRefGoogle Scholar
  4. 4.
    Zeng J, Li M, Liu A, Feng F, Zeng T, Duan W, Li M, Gong M, Wen C-Y, Yin Y (2018) Au/AgI dimeric nanoparticles for highly selective and sensitive colorimetric detection of hydrogen sulfide. Adv Funct Mater 28(26):1800515CrossRefGoogle Scholar
  5. 5.
    Shanmugaraj K, Ilanchelian M (2016) Colorimetric determination of sulfide using chitosan-capped silver nanoparticles. Microchim Acta 183(5):1721–1728CrossRefGoogle Scholar
  6. 6.
    Nechaeva D, Shishov A, Ermakov S, Bulatov A (2018) A paper-based analytical device for the determination of hydrogen sulfide in fuel oils based on headspace liquid-phase microextraction and cyclic voltammetry. Talanta 183:290–296CrossRefGoogle Scholar
  7. 7.
    Lee D-Y, Huang W-C, Gu T-J, Chang G-D (2018) Quantitative and comparative liquid chromatography-electrospray ionization-mass spectrometry analyses of hydrogen sulfide and thiol metabolites derivaitized with 2-iodoacetanilide isotopologues. J Chromatogr A 1552:43–52CrossRefGoogle Scholar
  8. 8.
    Butwong N, Srijaranai S, Luong JHT (2016) Fluorometric determination of hydrogen sulfide via silver-doped CdS quantum dots in solution and in a test strip. Microchim Acta 183(3):1–7CrossRefGoogle Scholar
  9. 9.
    Ni P, Chen C, Jiang Y, Zhao Z, Lu Y (2018) Fluorometric determination of sulfide ions via its inhibitory effect on the oxidation of thiamine by Cu(II) ions. Microchim Acta 185(8):362CrossRefGoogle Scholar
  10. 10.
    Bai X, Xu S, Wang L (2018) Full-range pH stable Au-clusters in nanogel for confinement-enhanced emission and improved sulfide sensing in living cells. Anal Chem 90(5):3270–3275CrossRefGoogle Scholar
  11. 11.
    Liu J, Wang B, Xu M, Wang L, Zhou Z (2017) Preparation and use of Cu nanoclusters as fluorescent probes to determine Au(III) ions. J Lumin 185:258–262CrossRefGoogle Scholar
  12. 12.
    Wu J, Jiang K, Wang X, Wang C, Zhang C (2017) On−off−on gold nanocluster-based near infrared fluorescent probe for recognition of Cu(II) and vitamin C. Microchim Acta 184(5):1315–1324CrossRefGoogle Scholar
  13. 13.
    Martín-Barreiro A, de Marcos S, Galbán J (2018) Gold nanoclusters as a quenchable fluorescent probe for sensing oxygen at high temperatures. Microchim Acta 185(3):171CrossRefGoogle Scholar
  14. 14.
    Ali R, Saleh SM, Aly SM (2017) Fluorescent gold nanoclusters as pH sensors for the pH 5 to 9 range and for imaging of blood cell pH values. Microchim Acta 184(9):3309–3315CrossRefGoogle Scholar
  15. 15.
    Borghei Y-S, Hosseini M, Ganjali MR (2017) Fluorometric determination of microRNA via FRET between silver nanoclusters and CdTe quantum dots. Microchim Acta 184(12):4713–4721CrossRefGoogle Scholar
  16. 16.
    Yuan X, Tay Y, Dou X, Luo Z, Leong DT, Xie J (2013) Glutathione-protected silver nanoclusters as cysteine-selective Fluorometric and colorimetric probe. Anal Chem 85(3):1913–1919CrossRefGoogle Scholar
  17. 17.
    Zhou T, Rong M, Cai Z, Yang CJ, Chen X (2012) Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and S2− sensing. Nanoscale 4(14):4103–4106CrossRefGoogle Scholar
  18. 18.
    Zhao Y, Tan L, Gao X, Jie G, Huang T (2018) Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy. Biosens Bioelectron 110:239–245CrossRefGoogle Scholar
  19. 19.
    Bhattacharjee Y, Chakraborty A (2014) Label-free Cysteamine-capped silver nanoparticle-based colorimetric assay for Hg(II) detection in water with Subnanomolar exactitude. ACS Sustain Chem Eng 2(9):2149–2154CrossRefGoogle Scholar
  20. 20.
    Liu J, Vellaisamy K, Yang G, Leung C-H, Ma D-L (2017) Luminescent turn-on detection of Hg(II) via the quenching of an iridium(III) complex by Hg(II)-mediated silver nanoparticles. Sci Rep 7(1)Google Scholar
  21. 21.
    T-y Z, L-p L, M-c R, Y-q J, Chen X (2013) Silver–gold alloy nanoclusters as a fluorescence-enhanced probe for aluminum ion sensing. Anal Chem 85(20):9839–9844CrossRefGoogle Scholar
  22. 22.
    Dong JX, Gao ZF, Zhang Y, Li BL, Zhang W, Lei JL, Li NB, Luo HQ (2016) The pH-switchable agglomeration and dispersion behavior of fluorescent Ag nanoclusters and its applications in urea and glucose biosensing. NPG Asia Materials 8(12):e335–e335CrossRefGoogle Scholar
  23. 23.
    Huang H, Li H, Feng J-J, Wang A-J (2016) One-step green synthesis of fluorescent bimetallic Au/Ag nanoclusters for temperature sensing and in vitro detection of Fe 3+. Sensors Actuat B: Chem 223:550–556CrossRefGoogle Scholar
  24. 24.
    Zhang N, Si Y, Sun Z, Chen L, Li R, Qiao Y, Wang H (2014) Rapid, selective, and ultrasensitive Fluorimetric analysis of mercury and copper levels in blood using bimetallic gold–silver nanoclusters with “silver effect”-enhanced red fluorescence. Anal Chem 86(23):11714–11721CrossRefGoogle Scholar
  25. 25.
    Rajamanikandan R, Ilanchelian M (2017) Highly selective and sensitive biosensing of dopamine based on glutathione coated silver nanoclusters enhanced fluorescence. New J Chem 41(24):15244–15250CrossRefGoogle Scholar
  26. 26.
    Han G-C, Liu Y-N (2010) Synthesis, characterization and fluorescent properties of cerium(III) glutathione complex. Luminescence 25(5):389–393CrossRefGoogle Scholar
  27. 27.
    Li Y, Deng Y, Zhou X, Hu J (2018) A label-free turn-on-off fluorescent sensor for the sensitive detection of cysteine via blocking the Ag + −enhancing glutathione-capped gold nanoclusters. Talanta 179:742–752CrossRefGoogle Scholar
  28. 28.
    Hemmateenejad B, Shamsipur M, Samari F, Rajabi HR (2015) Study of the interaction between human serum albumin and Mn-doped ZnS quantum dots. J Iran Chem Soc 12(10):1729–1738CrossRefGoogle Scholar
  29. 29.
    Jana J, Acharyya P, Negishi Y, Pal T (2018) Evolution of silver-mediated, enhanced fluorescent Au–Ag nanoclusters under UV activation: a platform for sensing. ACS Omega 3(3):3463–3470CrossRefGoogle Scholar
  30. 30.
    Huang X, Shahzad SA, Li Y, Zhang Y, Sang L, Zhou H, Jiang H, Kam-Wing LK, Yu C (2017) Silver nanoclusters capped silica nanoparticles as a ratiometric photoluminescence nanosensor for the selective detection of I- and S2. Anal Chim Acta 988:S0003267017308607Google Scholar
  31. 31.
    Chen WY, Lan GY, Chang HT (2011) Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal Chem 83(24):9450–9455CrossRefGoogle Scholar
  32. 32.
    Peng S, Zhong T, Guo T, Shu D, Meng D, Liu H, Guo D (2018) A novel fluorescent probe for selective detection of hydrogen sulfide in living cells. New J Chem 42(7):5185–5192CrossRefGoogle Scholar
  33. 33.
    Dong Y, Wang L, Wang F, Li N, Jin Y, Zhang J, Yang X (2017) An etching based fluorescent probe for sensitive detection of hydrogen sulfide in cells. Analyst 142(24):4703–4707CrossRefGoogle Scholar
  34. 34.
    Wang C, Sun J, Mei H, Gao F (2016) Organic semiconductor polymer nanodots as a new kind of off-on fluorescent probe for sulfide. Microchim Acta 184(2):1–7Google Scholar
  35. 35.
    Li Z, Guo S, Lu C (2015) A highly selective fluorescent probe for sulfide ions based on aggregation of Cu nanocluster induced emission enhancement. Analyst 140(8):2719–2725CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based MaterialsAnhui Normal UniversityWuhuPeople’s Republic of China
  2. 2.Department of ChemistryHong Kong Baptist UniversityHong KongChina
  3. 3.State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacaoChina

Personalised recommendations