Microchimica Acta

, 186:21 | Cite as

Voltammetric determination of levofloxacin using silver nanoparticles deposited on a thin nickel oxide porous film

  • Chaoqiao Liu
  • Dong Xie
  • Peng Liu
  • Shilei Xie
  • Shoushan Wang
  • Faliang Cheng
  • Min ZhangEmail author
  • Lishi WangEmail author
Original Paper


The authors describe a simplified chemical precipitation method and silver mirror reaction to synthesize a nanocomposite consiting of silver nanoparticles on a thin and porous nickel oxide film. Placed on a glassy carbon electrode (GCE), it allows for the determination of levofloxacin (LEV) via square wave voltammetry (SWV). Under optimal detection conditions, the voltammetric signal (typically measured at around 0.96 V vs. SCE) increases linearly in the 0.25–100 μM LEV concentration range. And the detection limit was calculated as 27 nM (at S/N = 3). The sensor is highly selective, stable and repeatable. It was applied to the determination of LEV in spiked human serum samples, and the satisfactory results confirm the applicability of this sensor to practical analyses.

Graphical abstract

Schematic of a two-step method to synthesize a nanocomposite consisting of nickel oxide porous thin-film supported silver nanoparticles. The composite was used for improved voltammetric determination of levofloxacin.


Levofloxacin Antibiotics Fluoroquinolone Chemical precipitation P-type semiconductor Porous thin-film Square wave voltammetry Nanocomposite sensor Signal amplification Electroanalysis 



This work was supported by National Natural Science Foundation of China (No. 21475022, 21505019), the Natural Science Foundations of Guangdong Province (No.2015A030310272), Technology Planning Project of Guangdong Province (No.2015B090927007). Guangdong Provincial Key Platform and Major Scientific Research Projects for Colleges and Universities (No. 2015KCXTD029).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3146_MOESM1_ESM.doc (574 kb)
ESM 1 (DOC 573 kb)


  1. 1.
    Petitjeans F, Nadaud J, Perez JP, Debien B, Olive F, Villevieille T, Pats B (2003) A case of rhabdomyolysis with fatal outcome after a treatment with levofloxacin. Eur Clin Pharmacol 59:779–780Google Scholar
  2. 2.
    Boyanova L, Ilieva J, Gergova G, Mitov I (2016) Levofloxacin susceptibility testing against helicobacter pylori: evaluation of a modified disk diffusion method compared to E test. Diagn Micr Infec Dis 84:55–56Google Scholar
  3. 3.
    Aversano M, Schroeder J, Citterio A, Scibilia J, Gamba C, Balossi L, Mascheri A, Losappio L, Pastorello E (2014) Levofloxacin induced Stevens-Johnson syndrome/toxic epidermal necrolysis overlap syndrome: case reports. Clin Transl Allergy 4:91Google Scholar
  4. 4.
    Hidi IJ, Jahn M, Pletz MW, Weber K, Cialla-May D (2016) Toward levofloxacin monitoring in human urine samples by employing the LOC-SERS technique. J Phys Chem C 120:20613–20623Google Scholar
  5. 5.
    Van P, Pouplin T, Tho NDK, Phuong PN, Chau TTH, Thuong NT, Heemskerk D, Hien TT, Thwaites GE (2017) High-performance liquid chromatography with time-programmed fluorescence detection for the quantification of levofloxacin in human plasma and cerebrospinal fluid in adults with tuberculous meningitis. J Chromatogr B 1062:256Google Scholar
  6. 6.
    Locatelli M, Ciavarella MT, Paolino D, Celia C, Fiscarelli E, Ricciotti G, Pompilio A, Bonaventura GD, Grande R, Zengin G, Marzio LD (2015) Determination of ciprofloxacin and levofloxacin in human sputum collected from cystic fibrosis patients using microextraction by packed sorbent-high performance liquid chromatography photodiode array detector. J Chromatogr A 1419:58–66PubMedGoogle Scholar
  7. 7.
    Hu K, Huang X, Jiang Y, Fang W, Yang X (2010) Monoclonal antibody based enzyme-linked immunosorbent assay for the specific detection of ciprofloxacin and enrofloxacin residues in fishery products. Aquaculture 310:8–12Google Scholar
  8. 8.
    Ulu ST (2009) Rapid and sensitive spectrofluorimetric determination of enrofloxacin, levofloxacin and ofloxacin with 2,3,5,6-tetrachloro-p-benzoquinone. Spectrochim Acta A 72:1038–1042Google Scholar
  9. 9.
    Mondal RS, Roy DR (2017) Levofloxacin capped Ag-nanoparicles: a new highly selective sensor for cations under joint experimental and DFT investigation. Spectrochim Acta A 179:178–187Google Scholar
  10. 10.
    Dong Y, Su M, Chen P, Sun H (2014) Chemiluminescence of carbon dots induced by diperiodato-nicklate (IV) in alkaline solution and its application to a quenchometric flow-injection assays of paracetamol, L-cysteine and glutathione. Microchim Acta 182:1071Google Scholar
  11. 11.
    Zhang LW, Wang K, Zhang XX (2007) Study of the interactions between fluoroquinolones and human serum albumin by affinity capillary electrophoresis and fluorescence method. Anal Chem Acta 603:101–110Google Scholar
  12. 12.
    Wang F, Zhu L, Zhang J (2014) Electrochemical sensor for levofloxacin based on molecularly imprinted polypyrrole–graphene–gold nanoparticles modified electrode. Sens Actuators B: Chem 192:642–647Google Scholar
  13. 13.
    Tang L, Tong Y, Zheng R, Liu W, Gu Y, Li C, Chen R, Zhang Z (2014) Ag nanoparticles and electrospun CeO2-au composite nanofibers modified glassy carbon electrode for determination of levofloxacin. Sens Actuators B: Chem 203:95–101Google Scholar
  14. 14.
    Borowiec J, Yan K, Tin CC, Zhang J (2015) Synthesis of PDDA functionalized reduced graphene oxide decorated with gold nanoparticles and its electrochemical response toward levofloxacin. J Electrochem Soc 162:164Google Scholar
  15. 15.
    Wong A, Santos AM, Fatibello O (2018) Simultaneous determination of paracetamol and levofloxacin using a glassy carbon electrode modified with carbon black, silver nanoparticles and PEDOT:PSS film. Sens Actuators B: Chem 255:2264–2273Google Scholar
  16. 16.
    Wen W, Zhao DM, Zhang XH, Xiong HY, Wang SF, Chen W, Zhao YD (2012) One-step fabrication of poly(o-aminophenol)/multi-walled carbon nanotubes composite film modified electrode and its application for levofloxacin determination in pharmaceuticals. Sens Actuators B: Chem 174:202–209Google Scholar
  17. 17.
    Huang JY, Bao T, Hu TX, Wen W, Zhang XH, Wang SF (2016) Voltammetric determination of levofloxacin using a glassy carbon electrode modified with poly(o-aminophenol) and graphene quantum dots. Microchim Acta 184:127Google Scholar
  18. 18.
    Bonomo M, Dini D, Marrani AG (2016) Adsorption behavior of I3(−) and I(−) ions at a nanoporous NiO/acetonitrile interface studied by X-ray photoelectron spectroscopy. Langmuir 32:11540–11550PubMedGoogle Scholar
  19. 19.
    Li X, Xiang Y, Qu B, Su S (2017) A facial method to synthesize Se/NiO composites for high performance lithium ion battery electrodes. Mater Lett 203:1Google Scholar
  20. 20.
    Xie D, Su Q, Yuan W, Dong Z, Zhang J, Du (2013) Synthesis of porous NiO-wrapped graphene nanosheets and their improved lithium storage properties. J Phys Chem C 117:24121–24128Google Scholar
  21. 21.
    Xie D, Yuan W, Dong Z, Su Q, Zhang J, Du G (2013) Facile synthesis of porous NiO hollow microspheres and its electrochemical lithium-storage performance. Electrochim Acta 92:87–92Google Scholar
  22. 22.
    Qiu K, Lu M, Luo Y, Du X (2017) Engineering hierarchical nanotrees with CuCo2O4 trunks and NiO branches for high-performance supercapacitors. J Mater Chem A 5:5820–5828Google Scholar
  23. 23.
    Meng G, Yang Q, Wu X, Wan P, Li Y, Lei X, Sun X, Liu J (2016) Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor. Nano Energy 30:831–839Google Scholar
  24. 24.
    Carbone M, Nesticò A, Bellucci N, Micheli L, Palleschi G (2017) Enhanced performances of sensors based on screen printed electrodes modified with nanosized NiO particles. Electrochim Acta 246:580–587Google Scholar
  25. 25.
    Zhou Q, Umar A, Sodki EM, Amine A, Xu L, Gui Y, Ibrahim AA, Kumar R, Baskoutas S (2018) Fabrication and characterization of highly sensitive and selective sensors based on porous NiO nanodisks. Sens Actuators B: Chem 259:604–615Google Scholar
  26. 26.
    Wang J, Xu L, Lu Y, Sheng K, Liu W, Chen C, Li Y, Dong B, Song H (2016) Engineered IrO2@NiO core-shell nanowires for sensitive non-enzymatic detection of trace glucose in saliva. Anal Chem 88:12346–12353PubMedGoogle Scholar
  27. 27.
    Yuan B, Xu C, Liu L, Zhang Q, Ji S, Pi L, Zhang D, Huo Q (2013) Cu2O/NiOx/graphene oxide modified glassy carbon electrode for the enhanced electrochemical oxidation of reduced glutathione and nonenzyme glucose sensor. Electrochim Acta 104:78–83Google Scholar
  28. 28.
    Ci S, Huang T, Wen Z, Cui S, Mao S, Steeber DA, Chen J (2014) Nickel oxide hollow microsphere for non-enzyme glucose detection. Biosens Bioelectron 54:251–257PubMedGoogle Scholar
  29. 29.
    Soomro RA, Ibupoto ZH, Sirajuddin MI, Willander M (2015) Electrochemical sensing of glucose based on novel hedgehog-like NiO nanostructures. Sens Actuators B: Chem 209:966–974Google Scholar
  30. 30.
    Habibi B, Jahanbakhshi M (2014) Silver nanoparticles/multi walled carbon nanotubes nanocomposite modified electrode: Voltammetric determination of clonazepam. Electrochim Acta 118:10–17Google Scholar
  31. 31.
    Nantaphol S, Chailapakul O, Siangproh W (2015) Sensitive and selective electrochemical sensor using silver nanoparticles modified glassy carbon electrode for determination of cholesterol in bovine serum. Sens Actuators B: Chem 207:193–198Google Scholar
  32. 32.
    Liu Y, Huang CZ (2013) Screening sensitive nanosensors via the investigation of shape-dependent localized surface plasmon resonance of single ag nanoparticles. Nanoscale 5:7458–7466PubMedGoogle Scholar
  33. 33.
    Wang GL, Jiao HJ, Zhu XY, Dong YM, Li ZJ (2013) Novel switchable sensor for phosphate based on the distance-dependant fluorescence coupling of cysteine-capped cadmium sulfide quantum dots and silver nanoparticles. Analyst 138:2000–2006PubMedGoogle Scholar
  34. 34.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  35. 35.
    Moraes FC, Silva TA, Cesarino I, Lanza MRV, Machado SAS (2013) Antibiotic detection in urine using electrochemical sensors based on vertically aligned carbon nanotubes. Electroanal 25:2092–2099Google Scholar
  36. 36.
    Chi Y, Li J (2010) Determination of levofloxacin hydrochloride with multiwalled carbon nanotubes polymeric alizarin film modified electrode. Russ J Electrochem 46:155–160Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Chaoqiao Liu
    • 1
    • 2
  • Dong Xie
    • 1
  • Peng Liu
    • 1
  • Shilei Xie
    • 1
  • Shoushan Wang
    • 1
  • Faliang Cheng
    • 1
  • Min Zhang
    • 1
    Email author
  • Lishi Wang
    • 2
    Email author
  1. 1.Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil EngineeringDongguan University of TechnologyDongguanPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations