Advertisement

Microchimica Acta

, 186:57 | Cite as

Disposable syringe-based visual immunotest for pathogenic bacteria based on the catalase mimicking activity of platinum nanoparticle-concanavalin A hybrid nanoflowers

  • Kui-Yu Wang
  • Sheng-Jun Bu
  • Chuan-Jing Ju
  • Ye Han
  • Cheng-You Ma
  • Wen-Sen Liu
  • Zhong-Yi Li
  • Chang-Tian LiEmail author
  • Jia-Yu WanEmail author
Original Paper
  • 68 Downloads

Abstract

Disposable syringes were used in a novel point-of-care visual test for detecting pathogenic bacteria (Escherichia coli O157:H7 and Salmonella typhimurium). Hybrid nanoflowers composed of platinum nanoparticles and concanavalin A (Pt-nanoflowers) were prepared through a one-pot reaction and were found to be viable catalase mimics. They catalyze the decomposition of hydrogen peroxide (H2O2) to generate O2. When used as labels in immunoassays, they integrate both the functions of biological recognition and signal amplification. The disposable syringe pressure readout was combined with Pt-nanoflower signal conversion and successfully applied to a visual bacteria detection scheme. Both Escherichia coli O157:H7 and Salmonella typhimurium can be quantified with detection limits of as low as 15 and 7 CFU·mL−1, respectively.

Graphical abstract

One-pot synthetic platinum nanoparticle (PtNP)-concanavalin A hybrid nanoflowers (Pt-nanoflowers), have been used as ideal signal labels for immunoassays and integrating both essential functions of biological recognition and signal amplification. Disposable syringes were used as a readout to detect pathogenic bacteria.

Keywords

Point-of-care Escherichia coli O157:H7 Salmonella typhimurium Hydrogen peroxide Detection limit 

Notes

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFD0501001).

Compliance with ethical standards

The authors declare that there is no conflict of interest.

Supplementary material

604_2018_3133_MOESM1_ESM.docx (1.9 mb)
ESM 1 (DOCX 1.90 MB)

References

  1. 1.
    Giljohann DA, Mirkin CA (2009) Drivers of biodiagnostic development. Nature 462(7272):461–464.  https://doi.org/10.1038/nature08605 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Park BH, Oh SJ, Jung JH, Choi G, Seo JH, Kim DH, Lee EY, Seo TS (2017) An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics. Biosens Bioelectron 91:334–340.  https://doi.org/10.1016/j.bios.2016.11.063 CrossRefPubMedGoogle Scholar
  3. 3.
    Romao VC, Martins SAM, Germano J, Cardoso FA, Cardoso S, Freitas PP (2017) Lab-on-Chip devices: gaining ground losing size. ACS Nano 11(11):10659–10664.  https://doi.org/10.1021/acsnano.7b06703 CrossRefPubMedGoogle Scholar
  4. 4.
    Wang A, Ma XM, Ye YZ, Luo F, Guo LH, Qiu B, Lin ZY, Chen GN (2018) A simple and convenient aptasensor for protein using an electronic balance as a readout. Anal Chem 90(2):1087–1091.  https://doi.org/10.1021/acs.analchem.7b03823 CrossRefPubMedGoogle Scholar
  5. 5.
    Zhu Z, Guan ZC, Liu D, Jia SS, Li JX, Lei ZC, Lin SC, Ji TH, Tian ZQ, Yang CYJ (2015) Translating molecular recognition into a pressure signal to enable rapid, sensitive, and portable biomedical analysis. Angew Chem Int Ed 54(36):10448–10453.  https://doi.org/10.1002/anie.201503963 CrossRefGoogle Scholar
  6. 6.
    Wu Z, Fu Q, Yu S, Sheng L, Xu M, Yao C, Xiao W, Li X, Tang Y (2016) Pt@AuNPs integrated quantitative capillary-based biosensors for point-of-care testing application. Biosens Bioelectron 85:657–663.  https://doi.org/10.1016/j.bios.2016.05.074 CrossRefPubMedGoogle Scholar
  7. 7.
    Loynachan CN, Thomas MR, Gray ER, Richards DA, Kim J, Miller BS, Brookes JC, Agarwal S, Chudasama V, McKendry RA, Stevens MM (2018) Platinum nanocatalyst amplification: redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range. ACS Nano 12(1):279–288.  https://doi.org/10.1021/acsnano.7b06229 CrossRefPubMedGoogle Scholar
  8. 8.
    Huang H, Zhao G, Dou W (2018) Portable and quantitative point-of-care monitoring of Escherichia coli O157:H7 using a personal glucose meter based on immunochromatographic assay. Biosens Bioelectron 107:266–271.  https://doi.org/10.1016/j.bios.2018.02.027 CrossRefPubMedGoogle Scholar
  9. 9.
    Lin B, Liu D, Yan J, Qiao Z, Zhong Y, Yan J, Zhu Z, Ji T, Yang CJ (2016) Enzyme-encapsulated liposome-linked immunosorbent assay enabling sensitive personal glucose meter readout for portable detection of disease biomarkers. ACS Appl Mater Interfaces 8(11):6890–6897.  https://doi.org/10.1021/acsami.6b00777 CrossRefPubMedGoogle Scholar
  10. 10.
    Du Y, Pothukuchy A, Gollihar JD, Nourani A, Li B, Ellington AD (2017) Coupling sensitive nucleic acid amplification with commercial pregnancy test strips. Angew Chem Int Ed Engl 56(4):992–996.  https://doi.org/10.1002/anie.201609108 CrossRefPubMedGoogle Scholar
  11. 11.
    Liu D, Tian T, Chen X, Lei Z, Song Y, Shi Y, Ji T, Zhu Z, Yang L, Yang C (2018) Gas-generating reactions for point-of-care testing. Analyst 143(6):1294–1304.  https://doi.org/10.1039/c8an00011e CrossRefPubMedGoogle Scholar
  12. 12.
    Ding E, Hai J, Li T, Wu J, Chen F, Wen Y, Wang B, Lu X (2017) Efficient hydrogen-generation CuO/Co3O4 heterojunction nanofibers for sensitive detection of cancer cells by portable pressure meter. Anal Chem 89(15):8140–8147.  https://doi.org/10.1021/acs.analchem.7b01951 CrossRefPubMedGoogle Scholar
  13. 13.
    Wang Y, Zhu G, Qi W, Li Y, Song Y (2016) A versatile quantitation platform based on platinum nanoparticles incorporated volumetric bar-chart chip for highly sensitive assays. Biosens Bioelectron 85:777–784.  https://doi.org/10.1016/j.bios.2016.05.090 CrossRefPubMedGoogle Scholar
  14. 14.
    Lee S, Kwon D, Yim C, Jeon S (2015) Facile detection of troponin I using dendritic platinum nanoparticles and capillary tube indicators. Anal Chem 87(9):5004–5008.  https://doi.org/10.1021/acs.analchem.5b00921 CrossRefPubMedGoogle Scholar
  15. 15.
    Ma CX, Xie GM, Zhang W, Liang M, Liu B, Xiang H (2012) Label-free sandwich type of immunosensor for hepatitis C virus core antigen based on the use of gold nanoparticles on a nanostructured metal oxide surface. Microchim Acta 178(3–4):331–340.  https://doi.org/10.1007/s00604-012-0842-1 CrossRefGoogle Scholar
  16. 16.
    Ye R, Zhu C, Song Y, Song J, Fu S, Lu Q, Yang X, Zhu MJ, Du D, Li H, Lin Y (2016) One-pot bioinspired synthesis of all-inclusive protein-protein nanoflowers for point-of-care bioassay: detection of E. coli O157:H7 from milk. Nanoscale 8(45):18980–18986.  https://doi.org/10.1039/c6nr06870g CrossRefPubMedGoogle Scholar
  17. 17.
    Li FY, Li YY, Feng JH, Gao ZQ, Lv H, Ren X, Wei Q (2018) Facile synthesis of MoS2@Cu2O-Pt nanohybrid as enzyme-mimetic label for the detection of the hepatitis B surface antigen. Biosens Bioelectron 100:512–518.  https://doi.org/10.1016/j.bios.2017.09.048 CrossRefPubMedGoogle Scholar
  18. 18.
    Ge J, Lei J, Zare RN (2012) Protein-inorganic hybrid nanoflowers. Nat Nanotechnol 7(7):428–432.  https://doi.org/10.1038/nnano.2012.80 CrossRefPubMedGoogle Scholar
  19. 19.
    Zhu L, Gong L, Zhang YF, Wang R, Ge J, Liu Z, Zare RN (2013) Rapid detection of phenol using a membrane containing laccase nanoflowers. Chem Asian J 8(10):2358–2360.  https://doi.org/10.1002/asia.201300020 CrossRefPubMedGoogle Scholar
  20. 20.
    Li WY, Lu SY, Bao SJ, Shi ZZ, Lu ZS, Li CM, Yu L (2018) Efficient in situ growth of enzyme-inorganic hybrids on paper strips for the visual detection of glucose. Biosens Bioelectron 99:603–611.  https://doi.org/10.1016/j.bios.2017.08.015 CrossRefPubMedGoogle Scholar
  21. 21.
    Zeinhom MMA, Wang YJ, Sheng LN, Du D, Li L, Zhu MJ, Lin YH (2018) Smart phone based immunosensor coupled with nanoflower signal amplification for rapid detection of Salmonella Enteritidis in milk, cheese and water. Sensors Actuators B Chem 261:75–82.  https://doi.org/10.1016/j.snb.2017.11.093 CrossRefGoogle Scholar
  22. 22.
    Cui JD, Jia SR (2017) Organic-inorganic hybrid nanoflowers: a novel host platform for immobilizing biomolecules. Coord Chem Rev 352:249–263.  https://doi.org/10.1016/j.ccr.2017.09.008 CrossRefGoogle Scholar
  23. 23.
    Ye R, Zhu C, Song Y, Lu Q, Ge X, Yang X, Zhu MJ, Du D, Li H, Lin Y (2016) Bioinspired synthesis of all-in-one organic-inorganic hybrid nanoflowers combined with a handheld pH meter for on-site detection of food pathogen. Small 12(23):3094–3100.  https://doi.org/10.1002/smll.201600273 CrossRefPubMedGoogle Scholar
  24. 24.
    Kim E, Zwi-Dantsis L, Reznikov N, Hansel CS, Agarwal S, Stevens MM (2017) One-pot synthesis of multiple protein-encapsulated DNA flowers and their application in intracellular protein delivery. Adv Mater 29(26).  https://doi.org/10.1002/adma.201701086
  25. 25.
    Xu M, Wang R, Li Y (2016) An electrochemical biosensor for rapid detection of E. coli O157:H7 with highly efficient bi-functional glucose oxidase-polydopamine nanocomposites and Prussian blue modified screen-printed interdigitated electrodes. Analyst 141(18):5441–5449.  https://doi.org/10.1039/c6an00873a CrossRefPubMedGoogle Scholar
  26. 26.
    Li YX, Afrasiabi R, Fathi F, Wang N, Xiang CL, Love R, She Z, Kraatz HB (2014) Impedance based detection of pathogenic E-coli O157:H7 using a ferrocene-antimicrobial peptide modified biosensor. Biosens Bioelectron 58:193–199.  https://doi.org/10.1016/j.bios.2014.02.045 CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang H, Shi YP, Lan F, Pan Y, Lin YK, Lv JZ, Zhu ZH, Jiang Q, Yi C (2014) Detection of single-digit foodborne pathogens with the naked eye using carbon nanotube-based multiple cycle signal amplification. Chem Commun 50(15):1848–1850.  https://doi.org/10.1039/c3cc48417c CrossRefGoogle Scholar
  28. 28.
    Akanda MR, Tamilavan V, Park S, Jo K, Hyun MH, Yang H (2013) Hydroquinone diphosphate as a phosphatase substrate in enzymatic amplification combined with electrochemical-chemical-chemical redox cycling for the detection of E. coli O157:H7. Anal Chem 85(3):1631–1636.  https://doi.org/10.1021/ac3028855 CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang P, Liu H, Li X, Ma S, Men S, Wei H, Cui J, Wang H (2017) A label-free fluorescent direct detection of live Salmonella typhimurium using cascade triple trigger sequences-regenerated strand displacement amplification and hairpin template-generated-scaffolded silver nanoclusters. Biosens Bioelectron 87:1044–1049.  https://doi.org/10.1016/j.bios.2016.09.037 CrossRefPubMedGoogle Scholar
  30. 30.
    Liu T, Zhang X, Zhu W, Liu W, Zhang D, Wang J (2014) A G-quadruplex DNAzyme-based colorimetric method for facile detection of Alicyclobacillus acidoterrestris. Analyst 139(17):4315–4321.  https://doi.org/10.1039/c4an00643g CrossRefPubMedGoogle Scholar
  31. 31.
    Liu CC, Yeung CY, Chen PH, Yeh MK, Hou SY (2013) Salmonella detection using 16S ribosomal DNA/RNA probe-gold nanoparticles and lateral flow immunoassay. Food Chem 141(3):2526–2532.  https://doi.org/10.1016/j.foodchem.2013.05.089 CrossRefPubMedGoogle Scholar
  32. 32.
    Chen Y, Xianyu Y, Wang Y, Zhang X, Cha R, Sun J, Jiang X (2015) One-step detection of pathogens and viruses: combining magnetic relaxation switching and magnetic separation. ACS Nano 9(3):3184–3191.  https://doi.org/10.1021/acsnano.5b00240 CrossRefPubMedGoogle Scholar
  33. 33.
    Tao YZ, Yang J, Chen LJ, Huang YJ, Qiu B, Guo LH, Lin ZY (2018) Dialysis assisted ligand exchange on gold nanorods: amplification of the performance of a lateral flow immunoassay for E-coli O157:H7. Microchim Acta 185(7):350.  https://doi.org/10.1007/s00604-018-2897-0 CrossRefGoogle Scholar
  34. 34.
    Chen YY, Fang YC, Lin SY, Lin YJ, Yen SY, Huang CH, Yang CY, Chau LK, Wang SC (2017) Corona-induced micro-centrifugal flows for concentration of Neisseria and Salmonella bacteria prior to their quantitation using antibody-functionalized SERS-reporter nanobeads. Microchim Acta 184(4):1021–1028.  https://doi.org/10.1007/s00604-017-2077-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Military VeterinaryAcademy of Military Medical SciencesChangchunChina
  2. 2.The General Hospital of FAWChangchunChina
  3. 3.The Fourth Hospital of Jilin UniversityChangchunChina
  4. 4.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  5. 5.College of Geo-Exploration Science and TechnologyJilin UniversityChangchunChina
  6. 6.Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal FungiJilin Agricultural UniversityChangchunChina

Personalised recommendations