Microchimica Acta

, 186:23 | Cite as

Impedimetric aptasensor for kanamycin by using carbon nanotubes modified with MoSe2 nanoflowers and gold nanoparticles as signal amplifiers

  • Azadeh AzadbakhtEmail author
  • Amir Reza Abbasi
Original Paper


An aptamer based impedimetric method is described for the determination of kanamycin. A hydrothermal route was applied to synthesize molybdenum selenide nanoflowers (MoSe2) which are promising materials for use in sensing interfaces due to their high specific surface and excellent electrical conductivity. Carbon nanotubes were then decorated with the MoSe2 nanoflowers and gold nanoparticles (AuNP/CNT/MoSe2) and placed on a glassy carbon electrode to serve as a signal amplifier. An amino-terminal kanamycin-specific aptamer was covalently linked to carboxy groups of acid-oxidized CNTs on the electrode to act as the signalling probe. The various steps during the construction of the modified electrode were monitored by scanning electron microscopy, wavelength-dispersive and energy-dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The change in electrochemical signal was quantified by electrochemical impedance spectroscopy, typically at a working voltage of 0.22 V vs. Ag/AgCl. The calibration plot is linear in the 1 pM-0.1 nM and 100 nM-10 μM kanamycin concentration range and has a 0.28 pM detection limit. The assay is outstandingly selective, sensitive, stable and reproducible.

Graphical abstract


Amino-terminated ssDNA Molybdenum selenide nanoflowers Kanamycin Carbon nanotube 



The authors gratefully acknowledge the support of this work by the Khorramabad Branch, Islamic Azad University for financial support.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3130_MOESM1_ESM.docx (653 kb)
ESM 1 (DOCX 653 kb)


  1. 1.
    Yoshizawa S, Fourmy D, Puglisi JD (1998) Structural origins of gentamicin antibiotic action. E M BO J 17:6437–6448. CrossRefGoogle Scholar
  2. 2.
    Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C (2011) Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem 415:175–181. CrossRefPubMedGoogle Scholar
  3. 3.
    Leung KH, He HZ, Chan DSH, Fu WC, Leung CH, Ma DL (2013) An oligonucleotide-based switch-on luminescent probe for the detection of kanamycin in aqueous solution. Sensors Actuators B Chem 177:487–492. CrossRefGoogle Scholar
  4. 4.
    Jin Y, Jang JW, Han CH, Lee MH (2006) Development of immunoassays for the detection of kanamycin in veterinary fields. J Vet Sci 7:111–117. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Oertel R, Neumeister V, Kirch W (2004) Hydrophilic interaction chromatography combined with tandem-mass spectrometry to determine six aminoglycosides in serum. J Chromatogr A 1058:197–201. CrossRefPubMedGoogle Scholar
  6. 6.
  7. 7.
    Chen Y, Wang Z, Wang Z, Tang S, Zhu Y, Xiao X (2008) Rapid enzyme-linked immunosorbent assay and colloidal gold immunoassay for kanamycin and tobramycin in swine tissues. J Agric Food Chem 56:2944–2952. CrossRefPubMedGoogle Scholar
  8. 8.
    Althaus R, Berruga MI, Montero A, Roca M, Molina MP (2009) Evaluation of a microbiological multi-residue system on the detection of antibacterial substances in ewe milk. Anal Chim Acta 632:156–162. CrossRefPubMedGoogle Scholar
  9. 9.
    Wang X, Zou M, Xu X, Lei R, Li K, Li N (2009) Determination of human urinary kanamycin in one step using urea-enhanced surface plasmon resonance light-scattering of gold nanoparticles. Anal Bioanal Chem 395:2397–2403. CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang K, Gan N, Hu F, Chen X, Li T, Cao J (2018) Microfluidic electrophoretic non-enzymatic kanamycin assay making use of a stirring bar functionalized with gold-labeled aptamer, of a fluorescent DNA probe, and of signal amplification via hybridization chain reaction. Microchim Acta 185:181. CrossRefGoogle Scholar
  11. 11.
    Lai C, Liu X, Qin L, Zhang C, Zeng G, Huang D, Cheng M, Xu P, Yi H, Huang D (2017) Chitosan-wrapped gold nanoparticles for hydrogen-bonding recognition and colorimetric determination of the antibiotic kanamycin. Microchim Acta 184:2097–2105. CrossRefGoogle Scholar
  12. 12.
    Liao QG, Wei BH, Luo LG (2017) Aptamer based fluorometric determination of kanamycin using double-stranded DNA and carbon nanotubes. Microchim Acta 184:627–632. CrossRefGoogle Scholar
  13. 13.
    Loomans EE, Wiltenburg J, Koets M, Amerongen A (2003) Neamin as an immunogen for the development of a generic ELISA detecting gentamicin, kanamycin, and neomycin in milk. J Agric Food Chem 51:587–593. CrossRefPubMedGoogle Scholar
  14. 14.
    Megoulas NC, Koupparis MA (2005) Direct determination of kanamycin in raw materials, veterinary formulation and culture media using a novel liquid chromatography–evaporative light scattering method. Anal Chim Acta 547:64–72. CrossRefGoogle Scholar
  15. 15.
    Lee JH, Yigit MV, Mazumdar D, Lu Y (2010) Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Del Re 62:592–605. CrossRefGoogle Scholar
  16. 16.
    Tang QJ, Su XD, Loh KP (2007) Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers. J Colloid Interface Sci 315:99–106. CrossRefPubMedGoogle Scholar
  17. 17.
    Li H, Sun DE, Liu YJ, Liu ZH (2014) An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens Bioelectron 55:149–156. CrossRefPubMedGoogle Scholar
  18. 18.
    Sun X, Li FL, Shen GH, Huang JD, Wang XY (2014) Aptasensor based on the synergistic contributions of chitosan-gold nanoparticles, graphene-gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection. Analyst 139:299–308. CrossRefPubMedGoogle Scholar
  19. 19.
    Zhan X, Hu G, Wagberg T, Zhan S, Xu H, Zhou P (2016) Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Microchim Acta 183:723–729. CrossRefGoogle Scholar
  20. 20.
    Shukla SK, Lavon A, Shmulevich O, Ben-Yoav H (2018) The effect of loading carbon nanotubes onto chitosan films on electrochemical dopamine sensing in the presence of biological interference. Talanta 181:57–64. CrossRefPubMedGoogle Scholar
  21. 21.
    Jie G, Tan L, Zhao Y, Wang X (2017) A novel silver nanocluster in situ synthesized as versatile probe for electrochemiluminescence and electrochemical detection of thrombin by multiple signal amplification strategy. Biosens Bioelectron 94:243–249. CrossRefPubMedGoogle Scholar
  22. 22.
    Wang H, Kong D, Johanes P, Cha JJ, Zheng G, Yan K, Liu N, Cui Y (2013) MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett 13:3426–3433. CrossRefPubMedGoogle Scholar
  23. 23.
    Huang KJ, Shuai HL, Chen YX (2016) Layered molybdenum selenide stacking flower-like nanostructurecoupled with guanine-rich DNA sequence for ultrasensitiveochratoxin A aptasensor application. Sensors Actuators B Chem 225:391–397. CrossRefGoogle Scholar
  24. 24.
    Ng S, Lim HS, Ma Q, Gao Z (2016) Optical aptasensors for adenosine triphosphate. Theranostics 6:1683–1702. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ambrosi A, Bonanni A, Sofer Z, Cross JS, Pumera M (2011) Electrochemistry at chemically modified graphenes. Chem Eur J 17:10763–10770. CrossRefPubMedGoogle Scholar
  26. 26.
    Wang GX, Bao WJ, Wang J, Lu QQ, Xia XH (2013) Immobilization and catalytic activity of horseradish peroxidase on molybdenum disulfide nanosheets modified electrode. Electrochem Commun 35:146–148. CrossRefGoogle Scholar
  27. 27.
    Hmamou DB, Salghi R, Zarrouk A, Hammouti B, Benali O (2013) Studies on the inhibitive effect of potassium ferrocyanide on the corrosion of steel in phosphoric acid. Res Chem Intermed 39:3475–3485. CrossRefGoogle Scholar
  28. 28.
    Nguyen S, Lim JC, Lee JK (2014) Improving the performance of silicon anode in lithium-ion batteries by Cu2O coating layer. J Appl Electrochem 44:353–360. CrossRefGoogle Scholar
  29. 29.
    Ramezani M, Danesh NM, Lavaee P, Abnouse K, Taghdisif SM (2016) A selective and sensitive fluorescent aptasensor for detection ofkanamycin based on catalytic recycling activity of exonuclease III andgold nanoparticles. Sensors Actuators B Chem 222:1–7. CrossRefGoogle Scholar
  30. 30.
    Liu X, Liu P, Tang Y, Yang L, Li L, Qi Z, Li D, Wong DKY (2018) A photoelectrochemical aptasensor based on a 3D flower-like TiO2-MoS2- gold nanoparticle heterostructure for detection of kanamycin. Biosens Bioelectron 112:193–201. CrossRefPubMedGoogle Scholar
  31. 31.
    Dehghani S, Danesh NM, Ramezani M, Alibolandi M, Lavaee P, Nejabat M, Abnous K, Taghdisi SM (2018) A label-free fluorescent aptasensor for detection of kanamycin based on dsDNA-capped mesoporous silica nanoparticles and Rhodamine B. Anal Chim Acta 1:142–147. CrossRefGoogle Scholar
  32. 32.
    Han C, Li R, Li H, Liu S, Xu C, Wang J, Wang Y, Huang J (2017) Ultrasensitive voltammetric determination of kanamycin using a target-triggered cascade enzymatic recycling couple along with DNAzyme amplification. Microchim Acta 184:2941–2948. CrossRefGoogle Scholar
  33. 33.
    Bai X, Hou H, Zhang B, Tang J (2014) Label-free detection of kanamycin using aptamer-based cantilever array sensor. Biosens Bioelectron 56:112–116. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Khorramabad BranchIslamic Azad UniversityKhorramabadIran
  2. 2.Faculty of ChemistryRazi UniversityKermanshahIran

Personalised recommendations