Microchimica Acta

, 186:6 | Cite as

Electrochemical sandwich immunoassay for insulin detection based on the use of gold nanoparticle-modified MoS2 nanosheets and the hybridization chain reaction

  • Huidan Sun
  • Shaoyan Wu
  • Xiaoyan Zhou
  • Min Zhao
  • Haiping Wu
  • Rong LuoEmail author
  • Shijia DingEmail author
Original Paper


A sandwich-type of electrochemical immunoassay is described for the determination of insulin. It is based on the use of a glassy carbon electrode that was modified with MoS2 nanosheets decorated with gold nanoparticles (AuNPs) to immobilize a large amount of first antibody (Ab1). Following exposure to insulin, secondary antibody (Ab2) that was cross-linked to a DNA initiator strand (T0) to form an Ab2@T0 conjugate was added to undergo a sandwich immunoreaction. Subsequently, the long dsDNA concatemer was formed by a hybridization chain reaction between Ab2@T0 and auxiliary probes (H1, H2). Finally, the electrochemical probe ruthenium(II) hexaammine was intercalated into the dsHCR products via electrostatic interaction between the anionic DNA phosphate backbones and the cationic probe. The electrochemical response, best measured at a potential of around −0.21 V (vs Ag/AgCl) has a dynamic range that extends from 0.1 pmol L−1 to 1 nmol L−1 insulin, and the detection limit is as low as 50 fmol L−1. The assay was acceptably specific, reproducible and stable. In our perception, it represents a viable new tool for determination of this important clinical parameter.

Graphical abstract

Schematic of a sandwich-type of electrochemical immunoassay for the determination of insulin based on the use of MoS2 nanosheets modified with gold nanoparticles (AuNP@MoS2) and hybridization chain reaction (HCR).


Insulin Electrochemical Immunoassay MoS2 nanosheets AuNP@MoS2 Hybridization chain reaction Ruthenium(II) hexaammine Differential pulse voltammetry 



First antibody


Secondary antibody


Bovine serum albumin


Hexaammineruthenium(III) dichloride

H1 and H2

Auxiliary probes


Molybdenum disulfide nanosheets modified with gold nanoparticles



This work was funded by the National Natural Science Foundation of China (81572080), and the Special Project for Social Livelihood and Technological Innovation of Chongqing (cstc2015shmszx120040 and cstc2016shmszx130043).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3124_MOESM1_ESM.docx (773 kb)
ESM 1 (DOCX 773 kb)


  1. 1.
    Ivanova MI, Sieversa SA, Sawayaa MR, Wallb JS, Eisenberg D (2009) Molecular basis for insulin fibril assembly. Proc Natl Acad Sci U S A 106(45):18990–18995CrossRefGoogle Scholar
  2. 2.
    Zhang H, Zuo FM, Tan XR, Xu SH, Yuan R, Chen SH (2018) A novel electrochemiluminescent biosensor based on resonance energy transfer between poly(9,9-di-n-octylfluorenyl-2,7-diyl) and 3,4,9,10-perylenetetracar-boxylic acid for insulin detection. Biosens Bioelectron 104:65–71CrossRefGoogle Scholar
  3. 3.
    Riddy DM, Delerive P, Summers RJ, Sexton PM, Langmead CJ (2018) G protein-coupled receptors targeting insulin resistance, obesity, and type 2 diabetes mellitus. Pharmacol Rev 70(1):39–67CrossRefGoogle Scholar
  4. 4.
    Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (2001) The hormone resistin links obesity to diabetes. Nature 409(6818):307–312CrossRefGoogle Scholar
  5. 5.
    Hermansen K, Fontaine P, Kukolja KK, Peterkova V, Leth G, Gall MA (2004) Insulin analogues (insulin detemir and insulin aspart) versus traditionalhuman insulins (NPH insulin and regular human insulin) in basal-bolustherapy for patients with type 1 diabetes. Diabetologia 47(4):622–629CrossRefGoogle Scholar
  6. 6.
    Murayama H, Matsuura N, Kawamura T, Maruyama T, Kikuchi N, Kobayashi T, Nishibe F, Nagata A (2006) A sensitive radioimmunoassay of insulin autoantibody: reduction of non-specific binding of [125I] insulin. J Autoimmun 26(2):127–132CrossRefGoogle Scholar
  7. 7.
    Even MS, Sandusky CB, Barnard ND, Mistry J, Sinha MK (2007) Development of a novel ELISA for human insulin using monoclonal antibodies produced in serum-free cell culture medium. Clin Biochem 40(1-2):98–103CrossRefGoogle Scholar
  8. 8.
    Tanaka T, Matsunaga T (2000) Fully automated chemiluminescence immunoassay of insulin using antibody-protein a-bacterial magnetic particle complexes. Anal Chem 72(15):3518–3522CrossRefGoogle Scholar
  9. 9.
    Singh V, Nerimetla R, Yang M, Krishnan S (2017) Magnetite-quantum dot immunoarray for plasmon-coupled-fluorescence imaging of blood insulin and glycated hemoglobin. ACS Sens 2(7):909–915CrossRefGoogle Scholar
  10. 10.
    Wang Y, Gao D, Zhang P, Gong P, Chen C, Gao G, Cai L (2014) A near infrared fluorescence resonance energy transfer based aptamer biosensor for insulin detection in human plasma. Chem Commun (Camb) 50(7):811–813CrossRefGoogle Scholar
  11. 11.
    Cohen N, Sabhachandani P, Sarkar S, Kahanovitz L, Lautsch N, Russell SJ, Konry T (2017) Microsphere based continuous-flow immunoassay in a microfluidic device for determination of clinically relevant insulin levels. Microchim Acta 184(3):835–841CrossRefGoogle Scholar
  12. 12.
    Tabrizi MA, Shamsipur M, Saber R, Sarkar S, Besharati M (2018) An electrochemical aptamer-based assay for femtomolar determination of insulin using a screen printed electrode modified with mesoporous carbon and 1, 3, 6, 8-pyrenetetrasulfonate. Microchim Acta 185(1):59CrossRefGoogle Scholar
  13. 13.
    Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen X (2012) Electrochemical immunosensor for detection of cancer protein biomarkers. ACS Nano 6(8):6546–6561CrossRefGoogle Scholar
  14. 14.
    Shen J, Li Y, Gu H, Xia F, Zuo X (2014) Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 114(15):7631–7677CrossRefGoogle Scholar
  15. 15.
    Liu T, Liu Z (2018) 2D MoS2 nanostructures for biomedical applications. Adv Healthc Mater 7(8):e1701158CrossRefGoogle Scholar
  16. 16.
    Xing LW, Ma ZF (2015) A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 183(1):257–263CrossRefGoogle Scholar
  17. 17.
    Li F, Li Y, Feng J, Gao Z, Lv H, Ren X, Wei Q (2018) Facile synthesis of MoS2@Cu2O-Pt nanohybrid as enzyme-mimetic label for the detection of the hepatitis B surface antigen. Biosens Bioelectron 100:512–518CrossRefGoogle Scholar
  18. 18.
    Gao Z, Lia Y, Zhang X, Feng J, Kong L, Wang P, Chen Z, Dong Y, Wei Q (2018) Ultrasensitive electrochemical immunosensor for quantitative detection of HBeAg using au@Pd/MoS2@MWCNTs nanocomposite as enzyme-mimetic labels. Biosens Bioelectron 102:189–195CrossRefGoogle Scholar
  19. 19.
    Yang Y, Zhang H, Huang C, Yang D, Jia N (2017) Electrochemical non-enzyme sensor for detecting clenbuterol (CLB) based on MoS2-au-PEI-hemin layered nanocomposites. Biosens Bioelectron 89(Pt 1):461–467CrossRefGoogle Scholar
  20. 20.
    Su S, Zou M, Zhao H, Yuan CF, Xu YA, Zhang C, Wang LH, Fan CH, Wang LH (2015) Shape-controlled gold nanoparticles supported on MoS2 nanosheets: synergistic effect of thionine and MoS2 and their application for electrochemical label-free immunosensing. Nanoscale 7(45):19129–19135CrossRefGoogle Scholar
  21. 21.
    Kim J, Byun S, Smith AJ, Yu J, Huang J (2013) Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. J Phys Chem Lett 4(8):1227–1232CrossRefGoogle Scholar
  22. 22.
    Wang X, Chu C, Shen L, Deng WP, Yan M, Ge SG, Yu JH, Song XR (2015) An ultrasensitive electrochemical immunosensor based on the catalytical activity of MoS2-au composite using ag nanospheres as labels. Sensors Actuators B Chem 206(6):30–36CrossRefGoogle Scholar
  23. 23.
    Bi S, Yue S, Zhang S (2017) Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem Soc Rev 46(14):4281–4298CrossRefGoogle Scholar
  24. 24.
    Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101(43):15275–15278CrossRefGoogle Scholar
  25. 25.
    Zhou J, Xu M, Tang D, Gao Z, Tang J, Chen G (2012) Nanogold-based bio-bar codes for label-free immunosensing of proteins coupling with an in situ DNA-based hybridization chain reaction. Chem Commun (Camb) 48(100):12207–12209CrossRefGoogle Scholar
  26. 26.
    Song C, Xie G, Wang L, Liu L, Tian G, Xiang H (2014) DNA-based hybridization chain reaction for an ultrasensitive cancer marker EBNA-1 electrochemical immunosensor. Biosens Bioelectron 58:68–74CrossRefGoogle Scholar
  27. 27.
    Wang WJ, Li JJ, Rui K, Gai PP, Zhang JR, Zhu JJ (2015) Sensitive electrochemical detection of telomerase activity using sphericalnucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification. Anal Chem 87(5):3019–3026CrossRefGoogle Scholar
  28. 28.
    Nie Y, Yang M, Ding Y (2018) Gold nanoparticle enhanced hybridization chain reaction as a method for signal amplification. Application to electrochemical immunodetection of the ovarian cancer biomarker carbohydrate antigen 125. Microchim Acta 185(7):331CrossRefGoogle Scholar
  29. 29.
    Zhang B, Liu B, Tang D, Niessner R, Chen G, Knopp D (2012) DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal Chem 84(12):5392–5399CrossRefGoogle Scholar
  30. 30.
    Zhou J, Lai W, Zhuang J, Tang J, Tang D (2013) Nanogold-functionalized DNAzyme concatamers with redox-active intercalators for quadruple signal amplification of electrochemical immunoassay. ACS Appl Mater Interfaces 5(7):2773–2781CrossRefGoogle Scholar
  31. 31.
    Zhou KG, Mao NN, Wang HX, Peng Y, Zhang HL (2011) A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew Chem Int Ed 50(46):10839–10842CrossRefGoogle Scholar
  32. 32.
    Su S, Sun HF, Xu F, Yu LH, Fan CH, Wang LH (2014) Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Microchim Acta 181:1497–1503CrossRefGoogle Scholar
  33. 33.
    Yang ZH, Zhuo Y, Yuan R, Chai YQ (2016) Highly effective protein converting strategy for ultrasensitive electrochemical assay of cystatin C. Anal Chem 88(10):5189–5196CrossRefGoogle Scholar
  34. 34.
    Deng H, Yang X, Gao Z (2015) MoS2 nanosheets as an effective fluorescence quencher for DNA methyltransferase activity detection. Analyst 140(9):3210–3215CrossRefGoogle Scholar
  35. 35.
    Ma HM, Liu YY, Zhao YH, Li L, Zhang Y, Wu D, Wei Q (2018) Ultrasensitive immunoassay of insulin based on highly efficient electrochemiluminescence quenching of carboxyl-functionalized g-C3N4 through coreactant dual-consumption by NiPd-DNAzyme. J Electroanal Chem 818:168–175CrossRefGoogle Scholar
  36. 36.
    Xing B, Zhu WJ, Zheng XP, Zhu YY, Wei Q, Wu D (2018) Electrochemiluminescence immunosensor based on quenching effect of SiO2@PDA on SnO2/rGO/au NPs-luminol for insulin detection. Sens Actuator B-Chem 265:403–411CrossRefGoogle Scholar
  37. 37.
    Li YY, Tian LH, Liu L, Khan MS, Zhao GH, Fan DW, Cao W, Wei Q (2018) Dual-responsive electrochemical immunosensor for detection of insulin based on dual-functional zinc silicate spheres-palladium nanoparticles. Talanta 179:420–425CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Medical Examination Centrethe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  2. 2.Department of Endocrinologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  3. 3.Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory MedicineChongqing Medical UniversityChongqingChina

Personalised recommendations