Advertisement

Microchimica Acta

, 186:10 | Cite as

Synthesis of CuO/g-C3N4 composites, and their application to voltammetric sensing of glucose and dopamine

  • Yanli Huang
  • Yi Tan
  • Chuanqi Feng
  • Shiquan Wang
  • Huimin WuEmail author
  • Guangxue ZhangEmail author
Original Paper
  • 150 Downloads

Abstract

The preparation of 3 kinds of carbonaceous nanocomposites by hydrothermal treatment and subsequent calcination described. The first comprises a nanomaterial of type CuO/g-C3N4, with g-C3N4 in mass fractions of 2, 5 and 7 wt%, respectively. The second comprises CuO/porous carbon (5 wt%), and the third comprises CuO/carbon spheres (5 wt%). All of them were employed to modify a glassy carbon electrode (GCE) to obtain electrochemical sensors for glucose and dopamine. The GCE modified with CuO/g-C3N4 (5 wt%) displays the highest electrocatalytic activity towards glucose and dopamine. Figures of merit for sensing glucose (in 0.1 M NaOH solution) include a wide linear range (0.5 μM to 8.5 mM), a detection limit of 0.150 μM, and a sensitivity of 0.274 μA·μM−1·cm−2 (at a working potential of 0.60 V vs. Ag/AgCl). The respective data for dopamine (in pH 7.0 solution) are linear ranges from 0.2-16.0 μM and 16.0-78.7 μM, a lower detection limit of 60 nM, and an electrochemical sensitivity of 0.834 and 0.331 μA·μM−1·cm−2 (at a working potential of 0.22 V vs. Ag/AgCl). The good performance of the modified GCE is attributed to the synergetic interactions between CuO and the appropriate fraction of g-C3N4, and the improvement of conductivity.

Graphical abstract

Schematic presentation of a electrochemical sensor based on CuO/g-C3N4 for the determination of glucose and dopamine.

Keywords

Carbonaceous material Nanocomposite Hydrothermal method Calcination Synergetic effect Electrocatalyst Electrochemical sensor Cyclic voltammetry Amperometric response Differential pulse voltammetry 

Notes

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Grant No. 21205030), and by key project of Hubei provincial education department (D20171001), and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices (201710), and (111 project, B12015).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

604_2018_3120_MOESM1_ESM.doc (4.8 mb)
ESM 1 (DOC 4915 kb)

References

  1. 1.
    Wen D, Liu W, Herrmann AK, Haubold D, Holzschuh M, Simon F et al (2016) Simple and sensitive colorimetric detection of dopamine based on assembly of cyclodextrin-modified au nanoparticles. Small 12:2439–2442PubMedCrossRefGoogle Scholar
  2. 2.
    Kannan P, Maiyalagan T, Marsili E, Ghosh S et al (2017) Highly active 3-dimensional cobalt oxide nanostructures on the flexible carbon substrates for enzymeless glucose sensing. Analyst 142:4299–4307PubMedCrossRefGoogle Scholar
  3. 3.
    Xia YS, Ye JJ, Tan KH, Wang J, Yang G (2013) Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucose oxidase system. Anal Chem 85:6241–6247PubMedCrossRefGoogle Scholar
  4. 4.
    Wang Y, Yang L, Liu Y, Zhao Q, Ding F, Zou P, Rao H, Wang X (2018) Colorimetric determination of dopamine by exploiting the enhanced oxidase mimicking activity of hierarchical NiCo2S4-rGO composites. Microchim Acta 185:496CrossRefGoogle Scholar
  5. 5.
    Xu S, Chen L, Ma L (2018) Fluorometric determination of quercetin by using graphitic carbon nitride nanoparticles modified with a molecularly imprinted polymer. Microchim Acta 185:492CrossRefGoogle Scholar
  6. 6.
    Krishnamoorthy K, Sudha V, Kumar SMS, Thangamuthu R (2018) Simultaneous determination of dopamine and uric acid using copper oxide nano-rice modified electrode. J Alloys Compd.  https://doi.org/10.1016/j.jallcom.2018.03.118
  7. 7.
    Fang L, Wang F, Chen Z, Qiu Y, Zhai T, Hu M, Zhang C, Huang K (2017) Flower-like MoS2 decorated with Cu2O nanoparticles for non-enzymatic amperometric sensing of glucose. Talanta 167:593–599PubMedCrossRefGoogle Scholar
  8. 8.
    Yang S, Li G, Wang G, Zhao J, Gao X, Qu L (2015) Synthesis of Mn3O4 nanoparticles/nitrogen-doped graphene hybrid composite for nonenzymatic glucose sensor. Sensors Actuators B Chem 221:172CrossRefGoogle Scholar
  9. 9.
    Reddy S, Swamy BEK, Jayadevappa H (2012) CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim Acta 61:78–86CrossRefGoogle Scholar
  10. 10.
    Dhara K, Mahapatra DR (2018) Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim Acta 185(1):49CrossRefGoogle Scholar
  11. 11.
    Xu TQ, Zhang QL, Zheng JN, Lv ZY, Wei J (2014) Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide. Electrochim Acta 115:109–115CrossRefGoogle Scholar
  12. 12.
    Jampaiah T, Reddy TS, Coyle VE, Nafady A, Bhargava SK (2016) Co3O4@CeO2 hybrid flower-like microspheres: a strong synergistic peroxidase-mimicking artificial enzyme with high sensitivity for glucose detection. J Mater Chem B 5:720–730CrossRefGoogle Scholar
  13. 13.
    Zhang L, Gao Z, Liu C, Ren L, Tu Z, Liu R, Yang F, Zhang Y, Ye Z, Li Y, Cui L (2014) N-doped nanoporous graphene decorated three-dimensional CuO nanowire network and its application to photocatalytic degradation of dyes. RSC Adv 4:47455–47460CrossRefGoogle Scholar
  14. 14.
    Ma Y, Zhao M, Cai B, Wang W, Ye Z, Huang J (2014) 3D graphene foams decorated by CuO nanoflowers for ultrasensitive ascorbic acid detection. Biosens Bioelectron 59:384–388PubMedCrossRefGoogle Scholar
  15. 15.
    Li L, Hu Y, Deng D, Song H, Lv Y (2016) Highly sensitive cataluminescence gas sensors for 2-butanone based on g-C3N4 sheets decorated with CuO nanoparticles. Anal Bioanal Chem 408:8831–8841PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang H, Zhang G, Li Z, Qu K, Wang L, Zeng W, Zhang Q, Duan H (2016) Ultra-uniform CuO/cu in nitrogen-doped carbon nanofibers as a stable anode for Li-ion batteries. J Mater Chem A 4:10585–10592CrossRefGoogle Scholar
  17. 17.
    Zhao C, Wu X, Li P, Zhao C, Qian X (2017) Hydrothermal deposition of CuO/rGO/Cu2O nanocomposite on copper foil for sensitive nonenzymatic voltammetric determination of glucose and hydrogen peroxide. Microchim Acta 184:2341–2348CrossRefGoogle Scholar
  18. 18.
    Liu B, Ouyang X, Ding Y, Luo L, Xu D, Ning Y (2016) Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan. Talanta 146:114–121PubMedCrossRefGoogle Scholar
  19. 19.
    Jindal K, Tomar M, Gupta V (2017) A novel low-powered uric acid biosensor based on arrayed p-n junction heterostructures of ZnO thin film and CuO microclusters. Sensors Actuators B Chem 253:566–575CrossRefGoogle Scholar
  20. 20.
    Xue B, Li K, Feng L, Lu J, Zhang L (2017) Graphene wrapped porous Co3O4/NiCo2O4 double-shelled nanocages with enhanced electrocatalytic performance for glucose sensor. Electrochim Acta 239:36–44CrossRefGoogle Scholar
  21. 21.
    Fang L, Xie Y, Wang Y et al (2019) Facile synthesis of hierarchical porous carbon nanorods for supercapacitors application. Appl Surf Sci 46:4479–4487Google Scholar
  22. 22.
    Zhao Y, Xu S, Sun X, Xu X, Gao B (2018) Unique bar-like sulfur-doped C3N4/TiO2 nanocomposite: excellent visible light driven photocatalytic activity and mechanism study. Appl Surf Sci 436:873–881CrossRefGoogle Scholar
  23. 23.
    Zou J, Wu S, Liu Y, Sun Y, Cao Y, Hsu JP, Thye A, Wee S, Jiang J (2018) An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 130:652–663CrossRefGoogle Scholar
  24. 24.
    Xu S, Zhu H, Cao W, Wen Z, Wang J et al (2018) Cu-Al2O3-g-C3N4 and cu-Al2O3-C-dots with dual-reaction centres for simultaneous enhancement of Fenton-like catalytic activity and selective H2O2 conversion to hydroxyl radicals. Appl Catal B-Environ 234:223-233Google Scholar
  25. 25.
    Shen L, Yu L, Yu XY, Zhang X, Lou XW (2015) Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew Chem 127:1888–1892CrossRefGoogle Scholar
  26. 26.
    Mao Z, Chen J, Yang Y, Wang D, Bie L, Fahlman BD (2017) Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H evolution. ACS Appl Mater Interfaces 9:12427–12435PubMedCrossRefGoogle Scholar
  27. 27.
    Gong Y, Li M, Wang Y (2015) Carbon nitride in energy conversion and storage: recent advances and future prospects. Chem Sus Chem 8:931–946CrossRefGoogle Scholar
  28. 28.
    Chen J, Liu C, Huang Y, Lee H, Feng S (2018) Study of the growth mechanisms of nanoporous ag flowers for non-enzymatic glucose detection. Microchem J.  https://doi.org/10.1088/1361-6528/aae363
  29. 29.
    Li Y, He X, Guo M, Lin D et al (2018) Porous NiTe2 nanosheet array: An effective electrochemical sensor for glucose detection. Sensors Actuat B:Chem.  https://doi.org/10.1016/j.snb.2018.07.17
  30. 30.
    He J, Jiang Y, Peng J, Li C, Yan B, Wang X (2016) Fast synthesis of hierarchical cuprous oxide for nonenzymatic glucose biosensors with enhanced sensitivity. J Mater Sci 51:9696–9704CrossRefGoogle Scholar
  31. 31.
    Luan F, Zhang S, Chen D et al (2018) Ni3S2/ionic liquid-functionalized graphene as an enhanced material for the nonenzymatic detection of glucose. Microchem J.  https://doi.org/10.1016/j.microc.2018.08.046
  32. 32.
    Zhang X, Zhang Y, Ma L (2016) One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 227:488–496CrossRefGoogle Scholar
  33. 33.
    Li B, Zhou Y, Wu W, Liu M, Mei S, Zhou Y et al (2015) Highly selective and sensitive determination of dopamine by the novel molecularly imprinted poly(nicotinamide)/CuO nanoparticles modified electrode. Biosens Bioelectron 67:121–128PubMedCrossRefGoogle Scholar
  34. 34.
    Lian QW, Luo A, An Z, Li Z, Guo Y, Zhang D, Xue Z, Zhou X, Lu X (2015) Au nanoparticles on tryptophan-functionalized graphene for sensitive detection of dopamine. Appl Surf Sci 349:184–189CrossRefGoogle Scholar
  35. 35.
    Khan MZH, Liu X, Tang Y, Zhu J, Hu W (2018) A glassy carbon electrode modified with a composite consisting of gold nanoparticle, reduced graphene oxide and poly(L-arginine) for simultaneous voltammetric determination of dopamine, serotonin and L-tryptophan. Microchim Acta 185:439CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for Green Preparation and Application for Functional Materials, Ministry of Education & College of Chemistry & Chemical EngineeringHubei UniversityWuhanPeople’s Republic of China
  2. 2.Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai UniversityTianjinPeople’s Republic of China
  3. 3.School of Nuclear Technology and Chemistry & BiologyHubei University of Science and TechnologyXianningChina

Personalised recommendations