Advertisement

Microchimica Acta

, 186:30 | Cite as

Double G-quadruplexes in a copper nanoparticle based fluorescent probe for determination of HIV genes

  • Yunpeng Han
  • Feng Zhang
  • Hang GongEmail author
  • Changqun CaiEmail author
Original Paper
  • 107 Downloads

Abstract

A DNA-templated copper nanoparticle (CuNP) probe has been developed for the determination of the human immunodeficiency virus oligonucleotide (HIV-DNA). The function of the probe relies on affinity binding-induced DNA hybridization associated with the use of double G-quadruplexes. Double-stranded DNA (dsDNA) with poly(AT-TA) bases was used as a template for synthesis of dsDNA-CuNPs. These have weak fluorescence. In the next step, two G-rich sequences that are linked to both sides of the ds-DNA are locked by HIV complementary DNA (cDNA). If HIV-DNA is introduced, it will hybridize with cDNA, thereby transforming the two G-rich sequences into G-quadruplexes. This enhances the fluorescence of the adjacent dsDNA-CuNPs. Fluorescence increases linearly in the 1 to 200 and 250–1000 nM HIV-DNA concentration range, and the detection limit is 13 pM. This enzyme-free fluorometric assay is time-saving, easily operated, and therefore has large potential in biosensing because it may be extended to various other DNA targets.

Graphic abstract

Double-strand DNA-templated copper nanoparticles (DNA-CuNPs) have weak fluorescence. When Human Immunodeficiency Virus oligonucleotide (HIV-DNA) is added, it completely hybridized with HIV complementary DNA (cDNA). As a result, the two exposed G-rich sequences are transformed into G-quadruplexes, and an apparent increase in the fluorescence intensity can be observed. (AA: ascorbic acid).

Keywords

dsDNA-CuNPs HIV-DNA Enzyme-free Target-triggered chain hybridization 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21775132, 21505112), Scientific Research Foundation of Hunan Provincial Education Department (No. 16A204), Hunan 2011 Collaborative Innovation Center of Chemical Engineering & Technology with Environmental Benignity, Effective Resource Utilization, the project of innovation team of the ministry of education (IRT_17R90) and “1515”academic leader team program of Hunan Agricultural University.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3119_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1249 kb)

References

  1. 1.
    Wu Y-M, Cen Y, Huang L-J, Yu R-Q, Chu X (2014) Up conversion fluorescence resonance energy transfer biosensor for sensitive detection of human immunodeficiency virus antibodies in human serum. Chem Commun 50:4759CrossRefGoogle Scholar
  2. 2.
    Liang S, He G, Tian J, Zhao Y, Zhao S (2018) Fluorescence polarization gene assay for HIV-DNA based on the use of dendrite-modified gold nanoparticles acting as signal amplifiers. Microchim Acta 185(2):119CrossRefGoogle Scholar
  3. 3.
    YY-D XL, Xu D-D, Xing X-J, Pang D-W, Tang H-W (2016) DNA-stabilized silver nanoclusters and carbon nanoparticles oxide: a sensitive platform for label-free fluorescence turn-on detection of HIV-DNA sequences. Biosens Bioelectron 85:837CrossRefGoogle Scholar
  4. 4.
    Wang K, Fan DQ, Liu YQ, Dong SJ (2017) Cascaded multiple amplification strategy for ultrasensitive detection of HIV/HCV virus DNA. Biosens Bioelectron 87:116CrossRefGoogle Scholar
  5. 5.
    Zhao W-W, Han Y-M, Zhu Y-C, Zhang N, Xu J-J, Chen H-Y (2015) DNA labeling generates a unique amplification probe for sensitive photoelectrochemical immunoassay of HIV-1 p24 antigen. Anal Chem 87:5496CrossRefGoogle Scholar
  6. 6.
    Huang YL, Gao ZF, Luo HQ, Li NB (2017) Sensitive detection of HIV gene by coupling exonuclease III-assisted target recycling and guanine nanowire amplification. Sensors Actuators B Chem 238:1017CrossRefGoogle Scholar
  7. 7.
    Andrews CD, Spreen WR, Mohri WR, Moss L, Ford S, Gettie A, Russell-Lodrigue K, Bohm RP, Cheng-Mayer C, Hong Z, Markowitz M, Ho DD (2014) Long-acting integrase inhibitor protects macaques from intrarectal simian/human immunodeficiency virus. Science 343:1151CrossRefGoogle Scholar
  8. 8.
    Lin K-C, Kuo C-Y, Nieh C-C, Tseng W-L (2014) Molecular beacon-based NAND logic gate for sensing triplex DNA binders. RSC Adv 4:38389CrossRefGoogle Scholar
  9. 9.
    Lee C-Y, Tseng W-L (2015) Molecular beacon-based fluorescent assay for specific detection of over sulfated chondroitin sulfate contaminants in heparin without enzyme treatment. Anal Chem 87:5031CrossRefGoogle Scholar
  10. 10.
    Xu H, Hepel M (2011) "Molecular beacon"-based fluorescent assay for selective detection of glutathione and cysteine. Anal Chem 83:813CrossRefGoogle Scholar
  11. 11.
    Lu C-H, Yang H-H, Zhu C-L, Chen X, Chen G-N (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785CrossRefGoogle Scholar
  12. 12.
    Zhu CF, Zeng ZY, Li H, Li F, Fan CH, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998–6001CrossRefGoogle Scholar
  13. 13.
    Wang LL, Zhu J, Han L, Jin LH, Zhu CZ, Wang EK, Dong SJ (2012) Graphene-based aptamer logic gates and their application to multiplex detection. ACS Nano 6:6659CrossRefGoogle Scholar
  14. 14.
    Tikhomirov G, Hoogland S, Lee PE, Fischer A, Sargent EH, Kelley SO (2011) DNA-based programming of quantum dot valency. Self-assembly and luminescence. Nat. Nano 6:485Google Scholar
  15. 15.
    Niemeyer CM, Simon U (2010) DNA-based assembly of metal nanoparticles. Eur J Inorg Chem 2005:3641CrossRefGoogle Scholar
  16. 16.
    Cao Q, Teng Y, Yang X, Wang J, Wang EK (2015) A label-free fluorescent molecular beacon based on DNA-ag nanoclusters for the construction of versatile biosensors. Biosens Bioelectron 74:318CrossRefGoogle Scholar
  17. 17.
    Yeh H-C, Sharma J, Shih I-M, Vu DM, Martinez JS, Werner JH (2012) A fluorescence light-up ag nanocluster probe that discriminates single-nucleotide variants by emission color. J Am Chem Soc 134:11550CrossRefGoogle Scholar
  18. 18.
    Zhang M, Guo S-M, Li Y-R, Zuo P, Ye B-C (2012) A label-free fluorescent molecular beacon based on DNA-templated silver nanoclusters for detection of adenosine and adenosine deaminase. Chem Commun 48:5488CrossRefGoogle Scholar
  19. 19.
    Wang MD, Wang WH, Liu CF, Liu JB, Kang T-S, Leung C-H, Ma D-L (2017) A luminescence switch-on assay for the detection of specific gene deletion using G-quadruplex DNA and silver nanoclusters. Mater Chem Frons 1:128CrossRefGoogle Scholar
  20. 20.
    Yeh H-C, Sharma J, Han JJ, Martinez JS, Werner JH (2010) A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett 10:3106CrossRefGoogle Scholar
  21. 21.
    Rotaru A, Dutta S, Jentzsch E, Gothelf K, Mokhir A (2010) Selective dsDNA-templated formation of copper nanoparticles in solution. Angew Chem Int Ed 49:5665CrossRefGoogle Scholar
  22. 22.
    Song Q, Shi Y, He D, Xu S, Ouyang J (2015) Sequence-dependent dsDNA-templated formation of fluorescent copper nanoparticles. Chemistry 21:2417CrossRefGoogle Scholar
  23. 23.
    Wang X-P, Yin B-C, Ye B-C (2013) A novel fluorescence probe of dsDNA-templated copper nanoclusters for quantitative detection of microRNAs. RSC Adv 3:8633CrossRefGoogle Scholar
  24. 24.
    Song QW, Wang RH, Sun FF, Chen HK, Wang ZMK, Na N, Ouyang J (2017) A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles. Biosens Bioelectron 87:760CrossRefGoogle Scholar
  25. 25.
    Chen JY, Xu YE, Ji XH, He ZK (2016) Enzymatic polymerization-based formation of fluorescent copper nanoparticles for the nuclease assay. Sensors Actuators B Chem 239:262CrossRefGoogle Scholar
  26. 26.
    Sun FF, You Y, Liu J, Song QW, Shen XT, Na N, Ouyang J (2017) DNA three-way junction for differentiation of single nucleotide polymorphisms with fluorescent copper nanoparticles. Chemistry 23:6979CrossRefGoogle Scholar
  27. 27.
    Zhou ZX, Du Y, Dong SJ (2011) Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label-free aptamer sensor. Anal Chem 83:5122CrossRefGoogle Scholar
  28. 28.
    Seidel CAM, Schulz A, Sauer MHM (1996) Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J Phys Chem 100:5541–5553CrossRefGoogle Scholar
  29. 29.
    Sauer M, Drexhage KH, Lieberwirth U, Müller R, Nord S, Zander C (1998) Dynamics of the electron transfer reaction between an oxazine dye and DNA oligonucleotides monitored on the single-molecule level. Chem Phys Lett 284:153–163CrossRefGoogle Scholar
  30. 30.
    Li X, Scida K, Crooks RM (2015) Detection of hepatitis B virus DNA with a paper electrochemical sensor. Anal Chem 87:9009CrossRefGoogle Scholar
  31. 31.
    Yin D, Tao Y, Tang L, Li W, Zhang Z, Li J, Xie G (2017) Cascade toehold-mediated strand displacement along with non-enzymatic target recycling amplification for the electrochemical determination of the HIV-1 related gene. Microchim Acta 184:372CrossRefGoogle Scholar
  32. 32.
    Xiang DS, Li FQ, Wu CY, Shi BA, Zhai K (2017) The G-BHQ synergistic effect: improved double quenching molecular beacons based on guanine and black hole quencher for sensitive simultaneous detection of two DNAs. Talanta 174:289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan UniversityXiangtanChina
  2. 2.College of ScienceHunan Agricultural UniversityChangshaChina

Personalised recommendations