Microchimica Acta

, 186:55 | Cite as

Continuous magnetic droplets and microfluidics: generation, manipulation, synthesis and detection

  • Entesar Al-HetlaniEmail author
  • Mohamed O. AminEmail author
Review Article


In this review, an introduction is given to provide the fundamental principles of magnetic droplet microfluidics. This is followed by a thorough discussion of methods that have been developed for the continuous generation of magnetic droplets and their controlled and precise manipulation by using external magnetic fields. Next, attention is given to techniques devised for the continuous fabrication of magnetic materials in droplets with an emphasis on the synthesis and modification of magnetic nanoparticles (MNPs), magnetic microstructures, Janus microparticles and magnetic hydrogels. In addition, selected applications of continuous magnetic droplets in (bio)assays and detection methods are discussed. The review (with 113 refs.) ends with concluding remarks and a discussion of current challenges and the future outlook for the field of continuous magnetic droplet microfluidics.

Graphical abstract

Continuous generation of magnetic droplets in microfluidic devices has the advantage of producing droplets at high frequencies and therefore has been exploited for the synthesis and generation of magnetic microparticles, manipulation, performing (bio)assyas and detection of magnetic contents.


Magnetic droplets high throughput Generation Manipulation, (bio)assays Detection 



Acidified multi wall carbon nanotubes


Arbitrary unit


Bacterial magnetic nanowires


Bond number


Bovine serum albumin




Capillary number


Carboxymethyl cellulose


Congenital hypothyroidism


Coefficient deviation/ Coefficient of variance




Differential scanning calorimetry


Digital microfluidics


Droplet micro-magnetofluidics


Electrowetting on dielectric


Entrance of the throat


Ethylene tetrafluoroethylene


Ethoxylated trimethylolopropane triacrylate


False rate of counting




Finite element method


Flourescein isothiocyanate-bovine serum albumin


5 fluorouracil


Flow rate of the dispersed phase


Flow rate of the continuous phase


Flow rate of the inner phase


Flow rate of the outer phase


Fourier-transform infrared spectroscopy


Free-flow magnetophoresis




Giant magnetoresistive


Graphene oxide


Human serum albumin


Human serum albumin-magnetic beads


1-hydroxycyclohexyl phenyl ketone


Initial ferrofluid droplet


Final ferrofluid droplet


Interfacial tension force






Lift force ratio


Magnetic force ratio


Magnet location


Magnetic nanoparticles


Magnetic polymeric phase


Malachite green isothiocyanate gold nanoparticles


Migration length


Magnetic porous graphene oxide/multi-walled carbon nanotube beads




Near infrared




3-(N-Morpholino)propanesulfonic acid


Net force




Non-inertial lift force


No magnetic field






Paramagnetic ionic liquid




Permanent obstruction




Perfluoroalkoxy alkane


Poly(ethylene glycol) diacrylate


Polyethylene glycol perfluoropolyether


Poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate




Polyether ether ketone


Poly(fluorescein isothiocyanate allylamine hydrochloride)


Polymeric phase


Polymerase chain reaction


Poly(L-lactic acid)




Poly(sodium-4-styrerne sulfonate)




Polyvinyl alcohol


Poly(vinylidene fluoride-trifluoroethylene)




Quantum dots


Reynolds number


Rhodamine B isothiocyanate


Saturation magnetization


Scanning electron microscopy


Scanning electron microscopy-energy dispersive X-ray spectroscopy


Silicon nanoparticles


Sodium dodecyl sulfate


Specific absorption rates


Surface enhanced Raman spectroscopy


Supervised discriminant analysis


Temporary obstruction




Thermogravemtric analysis


Tri(propylene glycol) diacrylate


Uniform magnetic field


Water-in-oil-in-water droplets


Weber number


Vibrating sample magnetometer


Without obstruction


X-ray photon spectroscopy


X-ray powder diffraction



Acceleration of gravity






Characteristic length scale




Difference in density


Difference in magnetic susceptibility


Drag force


Dynamic viscosity


Interfacial tension


Magnetic field gradient


Magnetic field strength


Magnetic flux density


Magnetic force










Milli Pascal


Milli Tesla




Number of MNPs


Permeability of vacuum






Radius of the droplet


Standard deviation




Dragged velocity


Hydrodynamic flow velocity


Magnetic velocity





  1. 1.
    Day P, Manz A, Zhang Y (2012) Microdroplet technology: principles and emerging applications in biology and chemistry. Springer Science & Business MediaGoogle Scholar
  2. 2.
    Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19(22):9127–9133Google Scholar
  3. 3.
    Tirandazi P, Hidrovo CH (2018) An integrated gas-liquid droplet microfluidic platform for digital sampling and detection of airborne targets. Sensors Actuators B Chem 267:279–293Google Scholar
  4. 4.
    Tan Y-C, Fisher JS, Lee AI, Cristini V, Lee AP (2004) Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4(4):292–298PubMedGoogle Scholar
  5. 5.
    Zheng B, Roach LS, Ismagilov RF (2003) Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J Am Chem Soc 125(37):11170–11171PubMedGoogle Scholar
  6. 6.
    Li L, Mustafi D, Fu Q, Tereshko V, Chen DL, Tice JD, Ismagilov RF (2006) Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc Natl Acad Sci 103(51):19243–19248PubMedGoogle Scholar
  7. 7.
    Boedicker JQ, Li L, Kline TR, Ismagilov RF (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8(8):1265–1272PubMedPubMedCentralGoogle Scholar
  8. 8.
    Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, deMello AJ (2008) Microdroplets: a sea of applications? Lab Chip 8(8):1244–1254PubMedGoogle Scholar
  9. 9.
    Muradoglu M, Stone HA (2005) Mixing in a drop moving through a serpentine channel: a computational study. Phys Fluids 17(7):073305Google Scholar
  10. 10.
    Beer NR, Wheeler EK, Lee-Houghton L, Watkins N, Nasarabadi S, Hebert N, Leung P, Arnold DW, Bailey CG, Colston BW (2008) On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets. Anal Chem 80(6):1854–1858PubMedGoogle Scholar
  11. 11.
    Lindsay S, Vázquez T, Egatz-Gómez A, Loyprasert S, Garcia AA, Wang J (2007) Discrete microfluidics with electrochemical detection. Analyst 132(5):412–416PubMedGoogle Scholar
  12. 12.
    Chiu DT, Lorenz RM, Jeffries GDM (2009) Droplets for Ultrasmall-volume analysis. Anal Chem 81(13):5111–5118PubMedPubMedCentralGoogle Scholar
  13. 13.
    Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10(16):2032–2045PubMedGoogle Scholar
  14. 14.
    Gu H, Duits MH, Mugele F (2011) Droplets formation and merging in two-phase flow microfluidics. Int J Mol Sci 12(4):2572–2597PubMedPubMedCentralGoogle Scholar
  15. 15.
    Pekas N, Porter MD, Tondra M, Popple A, Jander A (2004) Giant magnetoresistance monitoring of magnetic picodroplets in an integrated microfluidic system. Appl Phys Lett 85(20):4783–4785Google Scholar
  16. 16.
    Scherer C, Figueiredo Neto AM (2005) Ferrofluids: properties and applications. Braz J Phys 35(3A):718–727Google Scholar
  17. 17.
    Nguyen N-T, Ng KM, Huang X (2006) Manipulation of ferrofluid droplets using planar coils. Appl Phys Lett 89(5):052509Google Scholar
  18. 18.
    Al-Hetlani E, Hatt OJ, Vojtíšek M, Tarn MD, Iles A, Pamme N (2010) Sorting and manipulation of magnetic droplets in continuous flow. AIP Conference Proceedings 1311:167–175Google Scholar
  19. 19.
    Lombardi D, Dittrich PS (2011) Droplet microfluidics with magnetic beads: a new tool to investigate drug–protein interactions. Anal Bioanal Chem 399(1):347–352PubMedGoogle Scholar
  20. 20.
    Nguyen N-T (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12(1–4):1–16Google Scholar
  21. 21.
    Pollack MG, Shenderov AD, Fair R (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2):96–101PubMedGoogle Scholar
  22. 22.
    Baroud CN, de Saint Vincent MR, Delville J-P (2007) An optical toolbox for total control of droplet microfluidics. Lab Chip 7(8):1029–1033PubMedGoogle Scholar
  23. 23.
    Okochi M, Tsuchiya H, Kumazawa F, Shikida M, Honda H (2010) Droplet-based gene expression analysis using a device with magnetic force-based-droplet-handling system. J Biosci Bioeng 109(2):193–197PubMedGoogle Scholar
  24. 24.
    Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38PubMedGoogle Scholar
  25. 25.
    Tarn MD, Peyman SA, Robert D, Iles A, Wilhelm C, Pamme N (2009) The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J Magn Magn Mater 321(24):4115–4122Google Scholar
  26. 26.
    Lee H, Xu L, Ahn B, Lee K, Oh KW (2012) Continuous-flow in-droplet magnetic particle separation in a droplet-based microfluidic platform. Microfluid Nanofluid 13(4):613–623Google Scholar
  27. 27.
    Tan S-H, Nguyen N-T, Yobas L, Kang TG (2010) Formation and manipulation of ferrofluid droplets at a microfluidic T-junction. J Micromech Microeng 20(4):045004Google Scholar
  28. 28.
    Chen CH, Abate AR, Lee D, Terentjev EM, Weitz DA (2009) Microfluidic assembly of magnetic hydrogel particles with uniformly anisotropic structure. Adv Mater 21(31):3201–3204Google Scholar
  29. 29.
    Huang J-P, Ge X-H, Xu J-H, Luo G-S (2016) Controlled formation and coalescence of paramagnetic ionic liquid droplets under magnetic field in coaxial microfluidic devices. Chem Eng Sci 152:293–300Google Scholar
  30. 30.
    Ohashi T, Kuyama H, Hanafusa N, Togawa Y (2007) A simple device using magnetic transportation for droplet-based PCR. Biomed Microdevices 9(5):695–702PubMedGoogle Scholar
  31. 31.
    Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220PubMedGoogle Scholar
  32. 32.
    Yapici MK, Zou J (2008) Permalloy-coated tungsten probe for magnetic manipulation of micro droplets. Microsyst Technol 14(6):881–891Google Scholar
  33. 33.
    Shah GJ, Veale JL, Korin Y, Reed EF, Gritsch HA, Kim C-JC (2010) Specific binding and magnetic concentration of CD 8+ T-lymphocytes on electrowetting-on-dielectric platform. Biomicrofluidics 4(4):044106PubMedCentralGoogle Scholar
  34. 34.
    Gascoyne PRC, Vykoukal JV (2004) Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proceedings of the IEEE Institute of Electrical and Electronics Engineers 92(1):22–42PubMedPubMedCentralGoogle Scholar
  35. 35.
    Darhuber AA, Valentino JP, Troian SM, Wagner S (2003) Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays. J Microelectromech Syst 12(6):873–879Google Scholar
  36. 36.
    Yang C, Zhang Z, Li G (2018) Programmable droplet manipulation by combining a superhydrophobic magnetic film and an electromagnetic pillar array. Sensors Actuators B Chem 262:892–901Google Scholar
  37. 37.
    Guttenberg Z, Muller H, Habermuller H, Geisbauer A, Pipper J, Felbel J, Kielpinski M, Scriba J, Wixforth A (2005) Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5(3):308–317PubMedGoogle Scholar
  38. 38.
    Lehmann U, Hadjidj S, Parashar VK, Vandevyver C, Rida A, Gijs MAM (2006) Two-dimensional magnetic manipulation of microdroplets on a chip as a platform for bioanalytical applications. Sensors Actuators B Chem 117(2):457–463Google Scholar
  39. 39.
    Liu J, Tan S-H, Yap YF, Ng MY, Nguyen N-T (2011) Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid Nanofluid 11(2):177–187Google Scholar
  40. 40.
    Liu J, Yap YF, Nguyen N-T (2011) Numerical study of the formation process of ferrofluid droplets. Phys Fluids 23(7):072008Google Scholar
  41. 41.
    Ali-Cherif A, Begolo S, Descroix S, Viovy J-L, Malaquin L (2012) Programmable magnetic tweezers and droplet microfluidic device for high-throughput Nanoliter multi-step assays. Angew Chem Int Ed 51(43):10765–10769Google Scholar
  42. 42.
    Sista RS, Eckhardt AE, Srinivasan V, Pollack MG, Palanki S, Pamula VK (2008) Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 8(12):2188–2196PubMedPubMedCentralGoogle Scholar
  43. 43.
    Baret J-C (2012) Surfactants in droplet-based microfluidics. Lab Chip 12(3):422–433PubMedGoogle Scholar
  44. 44.
    Brouzes E, Kruse T, Kimmerling R, Strey HH (2015) Rapid and continuous magnetic separation in droplet microfluidic devices. Lab Chip 15(3):908–919PubMedPubMedCentralGoogle Scholar
  45. 45.
    White AK, VanInsberghe M, Petriv OI, Hamidi M, Sikorski D, Marra MA, Piret J, Aparicio S, Hansen CL (2011) High-throughput microfluidic single-cell RT-qPCR. Proc Natl Acad Sci 108(34):13999–14004PubMedGoogle Scholar
  46. 46.
    Pamme N (2012) On-chip bioanalysis with magnetic particles. Curr Opin Chem Biol 16(3–4):436–443PubMedGoogle Scholar
  47. 47.
    Gijs MA, Lacharme F, Lehmann U (2009) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563Google Scholar
  48. 48.
    Chen X, Zhang L (2017) A review on micromixers actuated with magnetic nanomaterials. Microchim Acta 184(10):3639–3649Google Scholar
  49. 49.
    Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76(24):7250–7256PubMedGoogle Scholar
  50. 50.
    Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 45(16):2556–2560Google Scholar
  51. 51.
    Schuler F, Schwemmer F, Trotter M, Wadle S, Zengerle R, von Stetten F, Paust N (2015) Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA. Lab Chip 15(13):2759–2766PubMedGoogle Scholar
  52. 52.
    Yan Q, Xuan S, Ruan X, Wu J, Gong X (2015) Magnetically controllable generation of ferrofluid droplets. Microfluid Nanofluid 19(6):1377–1384Google Scholar
  53. 53.
    Ray A, Varma VB, Jayaneel P, Sudharsan N, Wang Z, Ramanujan RV (2017) On demand manipulation of ferrofluid droplets by magnetic fields. Sensors Actuators B Chem 242:760–768Google Scholar
  54. 54.
    Kahkeshani S, Di Carlo D (2016) Drop formation using ferrofluids driven magnetically in a step emulsification device. Lab Chip 16(13):2474–2480PubMedGoogle Scholar
  55. 55.
    Peyman SA, Kwan EY, Margarson O, Iles A, Pamme N (2009) Diamagnetic repulsion—a versatile tool for label-free particle handling in microfluidic devices. J Chromatogr A 1216(52):9055–9062PubMedGoogle Scholar
  56. 56.
    Hartshorne H, Backhouse CJ, Lee WE (2004) Ferrofluid-based microchip pump and valve. Sensors Actuators B Chem 99(2–3):592–600Google Scholar
  57. 57.
    Alorabi AQ, Tarn MD, Gómez-Pastora J, Bringas E, Ortiz I, Paunov VN, Pamme N (2017) On-chip polyelectrolyte coating onto magnetic droplets–towards continuous flow assembly of drug delivery capsules. Lab Chip 17(22):3785–3795PubMedGoogle Scholar
  58. 58.
    Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6(8):974–980PubMedGoogle Scholar
  59. 59.
    Zhang K, Liang Q, Ma S, Mu X, Hu P, Wang Y, Luo G (2009) On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force. Lab Chip 9(20):2992–2999PubMedGoogle Scholar
  60. 60.
    Zhang K, Liang Q, Ai X, Hu P, Wang Y, Luo G (2011) Comprehensive two-dimensional manipulations of picoliter microfluidic droplets sampled from nanoliter samples. Anal Chem 83(20):8029–8034PubMedGoogle Scholar
  61. 61.
    Zhang K, Liang Q, Ai X, Hu P, Wang Y, Luo G (2011) On-demand microfluidic droplet manipulation using hydrophobic ferrofluid as a continuous-phase. Lab Chip 11(7):1271–1275PubMedGoogle Scholar
  62. 62.
    Jo Y, Shen F, Hahn YK, Park J-H, Park J-K (2016) Magnetophoretic sorting of single cell-containing microdroplets. Micromachines 7(4):56PubMedCentralGoogle Scholar
  63. 63.
    Banerjee U, Raj A, Sen A (2018) Dynamics of aqueous ferrofluid droplets at coflowing liquid-liquid interface under a non-uniform magnetic field. Appl Phys Lett 113(14):143702Google Scholar
  64. 64.
    Wu Y, Fu T, Ma Y, Li HZ (2015) Active control of ferrofluid droplet breakup dynamics in a microfluidic T-junction. Microfluid Nanofluid 18(1):19–27Google Scholar
  65. 65.
    Afkhami S, Tyler A, Renardy Y, Renardy M, Pierre TS, Woodward R, Riffle J (2010) Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J Fluid Mech 663:358–384Google Scholar
  66. 66.
    Li H, Wu Y, Wang X, Zhu C, Fu T, Ma Y (2016) Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction. RSC Adv 6(1):778–785Google Scholar
  67. 67.
    Yamada M, Doi S, Maenaka H, Yasuda M, Seki M (2008) Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis. J Colloid Interface Sci 321(2):401–407PubMedGoogle Scholar
  68. 68.
    Aboutalebi M, Bijarchi MA, Shafii MB, Hannani SK (2018) Numerical investigation on splitting of ferrofluid microdroplets in T-junctions using an asymmetric magnetic field with proposed correlation. J Magn Magn Mater 447:139–149Google Scholar
  69. 69.
    Sander JS, Erb RM, Denier C, Studart AR (2012) Magnetic transport, mixing and release of cargo with tailored nanoliter droplets. Adv Mater 24(19):2582–2587PubMedGoogle Scholar
  70. 70.
    Misuk V, Mai A, Giannopoulos K, Alobaid F, Epple B, Loewe H (2013) Micro magnetofluidics: droplet manipulation of double emulsions based on paramagnetic ionic liquids. Lab Chip 13(23):4542–4548PubMedGoogle Scholar
  71. 71.
    Chu LY, Utada AS, Shah RK, Kim JW, Weitz DA (2007) Controllable monodisperse multiple emulsions. Angew Chem Int Ed 46(47):8970–8974Google Scholar
  72. 72.
    Adams L, Kodger TE, Kim S-H, Shum HC, Franke T, Weitz DA (2012) Single step emulsification for the generation of multi-component double emulsions. Soft Matter 8(41):10719–10724Google Scholar
  73. 73.
    Nisisako T, Okushima S, Torii T (2005) Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter 1(1):23–27Google Scholar
  74. 74.
    Lin G, Makarov D, Medina-Sánchez M, Guix M, Baraban L, Cuniberti G, Schmidt OG (2015) Magnetofluidic platform for multidimensional magnetic and optical barcoding of droplets. Lab Chip 15(1):216–224PubMedGoogle Scholar
  75. 75.
    Teste B, Jamond N, Ferraro D, Viovy J-L, Malaquin L (2015) Selective handling of droplets in a microfluidic device using magnetic rails. Microfluid Nanofluid 19(1):141–153Google Scholar
  76. 76.
    Varma V, Ray A, Wang Z, Wang Z, Ramanujan R (2016) Droplet merging on a lab-on-a-chip platform by uniform magnetic fields. Sci Rep 6:37671PubMedPubMedCentralGoogle Scholar
  77. 77.
    Frenz L, Harrak AE, Pauly M, Bégin-Colin S, Griffiths AD, Baret J-C (2008) Droplet-based microreactors for the synthesis of magnetic Iron oxide Nanoparticles. Angew Chem Int Ed 47(36):6817–6820Google Scholar
  78. 78.
    Paquet C, Jakubek ZJ, Simard B (2012) Superparamagnetic microspheres with controlled macroporosity generated in microfluidic devices. ACS Appl Mater Interfaces 4(9):4934–4941PubMedGoogle Scholar
  79. 79.
    Varma V, Wu R, Wang Z, Ramanujan R (2017) Magnetic Janus particles synthesized using droplet micro-magnetofluidic techniques for protein detection. Lab Chip 17(20):3514–3525PubMedGoogle Scholar
  80. 80.
    Jung JH, Park TJ, Lee SY, Seo TS (2012) Homogeneous biogenic paramagnetic Nanoparticle synthesis based on a microfluidic droplet generator. Angew Chem Int Ed 51(23):5634–5637Google Scholar
  81. 81.
    Ferraro D, Lin Y, Teste B, Talbot D, Malaquin L, Descroix S, Abou-Hassan A (2015) Continuous chemical operations and modifications on magnetic γ-Fe2O3 nanoparticles confined in nanoliter droplets for the assembly of fluorescent and magnetic SiO2@ γ-Fe2O3. Chem Commun 51(95):16904–16907Google Scholar
  82. 82.
    Zhu C, Xu W, Chen L, Zhang W, Xu H, Gu ZZ (2011) Magnetochromatic microcapsule arrays for displays. Adv Funct Mater 21(11):2043–2048Google Scholar
  83. 83.
    Jiang K, Xue C, Arya C, Shao C, George EO, DeVoe DL, Raghavan SR (2011) A new approach to in-situ “micromanufacturing”: microfluidic fabrication of magnetic and fluorescent chains using Chitosan microparticles as building blocks. Small 7(17):2470–2476PubMedGoogle Scholar
  84. 84.
    Bokharaei M, Schneider T, Dutz S, Stone RC, Mefford OT, Häfeli UO (2016) Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation. Microfluid Nanofluid 20(1):6Google Scholar
  85. 85.
    Yang C-H, Wang C-Y, Huang K-S, Kung C-P, Chang Y-C, Shaw J-F (2014) Microfluidic one-step synthesis of Fe3O4-chitosan composite particles and their applications. Int J Pharm 463(2):155–160PubMedGoogle Scholar
  86. 86.
    Cao X, Zang L, Bu Z, Sun L, Guo D, Wang C (2016) Microfluidic fabrication of magnetic porous multi-walled carbon nanotube beads for oil and organic solvent adsorption. J Mater Chem A 4(27):10479–10485Google Scholar
  87. 87.
    Bu Z, Zang L, Zhang Y, Cao X, Sun L, Qin C, Wang C (2017) Magnetic porous graphene/multi-walled carbon nanotube beads from microfluidics: a flexible and robust oil/water separation material. RSC Adv 7(41):25334–25340Google Scholar
  88. 88.
    Lee SW, Choi JS, Cho KY, Yim J-H (2016) Facile fabrication of uniform-sized, magnetic, and electroconductive hybrid microspheres using a microfluidic droplet generator. Eur Polym J 80:40–47Google Scholar
  89. 89.
    Kaufman G, Montejo KA, Michaut A, Majewski PW, Osuji CO (2017) Photoresponsive and Magnetoresponsive Graphene oxide microcapsules fabricated by droplet microfluidics. ACS Appl Mater Interfaces 9(50):44192–44198PubMedGoogle Scholar
  90. 90.
    Maher S, Santos A, Kumeria T, Kaur G, Lambert M, Forward P, Evdokiou A, Losic D (2017) Multifunctional microspherical magnetic and pH responsive carriers for combination anticancer therapy engineered by droplet-based microfluidics. J Mater Chem B 5(22):4097–4109Google Scholar
  91. 91.
    Shang L, Shangguan F, Cheng Y, Lu J, Xie Z, Zhao Y, Gu Z (2013) Microfluidic generation of magnetoresponsive Janus photonic crystal particles. Nanoscale 5(20):9553–9557PubMedGoogle Scholar
  92. 92.
    Yang Y-T, Wei J, Li X, Wu L-J, Chang Z-Q, Serra CA (2015) A side-by-side capillaries-based microfluidic system for synthesizing size-and morphology-controlled magnetic anisotropy janus beads. Adv Powder Technol 26(1):156–162Google Scholar
  93. 93.
    Lan J, Chen J, Li N, Ji X, Yu M, He Z (2016) Microfluidic generation of magnetic-fluorescent Janus microparticles for biomolecular detection. Talanta 151:126–131PubMedGoogle Scholar
  94. 94.
    Yu X, Zhang C, You S, Liu H, Zhang L, Liu W, Guo S-S, Zhao X-Z (2016) Microfluidic synthesis of multiferroic Janus particles with disk-like compartments. Appl Phys Lett 108(7):073504Google Scholar
  95. 95.
    Hwang DK, Dendukuri D, Doyle PS (2008) Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab Chip 8(10):1640–1647PubMedGoogle Scholar
  96. 96.
    Ferraro D, Champ J, Teste B, Serra M, Malaquin L, Viovy J-L, De Cremoux P, Descroix S (2016) Microfluidic platform combining droplets and magnetic tweezers: application to HER2 expression in cancer diagnosis. Sci Rep 6:25540PubMedPubMedCentralGoogle Scholar
  97. 97.
    Gao R, Cheng Z, Choo J (2016) Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics. Lab Chip 16(6):1022–1029PubMedGoogle Scholar
  98. 98.
    Gu S-Q, Zhang Y-X, Zhu Y, Du W-B, Yao B, Fang Q (2011) Multifunctional Picoliter droplet manipulation platform and its application in single cell analysis. Anal Chem 83(19):7570–7576PubMedGoogle Scholar
  99. 99.
    Du W-B, Sun M, Gu S-Q, Zhu Y, Fang Q (2010) Automated microfluidic screening assay platform based on DropLab. Anal Chem 82(23):9941–9947PubMedGoogle Scholar
  100. 100.
    Teste B, Ali-Cherif A, Viovy JL, Malaquin L (2013) A low cost and high throughput magnetic bead-based immuno-agglutination assay in confined droplets. Lab Chip 13(12):2344–2349PubMedGoogle Scholar
  101. 101.
    Yoon S, Kim JA, Lee SH, Kim M, Park TH (2013) Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles. Lab Chip 13(8):1522–1528PubMedGoogle Scholar
  102. 102.
    Millen RL, Kawaguchi T, Granger MC, Porter MD, Tondra M (2005) Giant magnetoresistive sensors and superparamagnetic nanoparticles: a chip-scale detection strategy for immunosorbent assays. Anal Chem 77(20):6581–6587PubMedGoogle Scholar
  103. 103.
    Shinji K, Takao Y, Ken H, Akira M, Saburo T (2001) Development of a new detection method for DNA molecules. Supercond Sci Technol 14(12):1131Google Scholar
  104. 104.
    Ejsing L, Hansen MF, Menon AK, Ferreira H, Graham D, Freitas P (2004) Planar hall effect sensor for magnetic micro-and nanobead detection. Appl Phys Lett 84(23):4729–4731Google Scholar
  105. 105.
    Kim KW, Reddy V, Torati SR, Hu XH, Sandhu A, Kim CG (2015) On-chip magnetometer for characterization of superparamagnetic nanoparticles. Lab Chip 15(3):696–703PubMedGoogle Scholar
  106. 106.
    Lin G, Fomin VM, Makarov D, Schmidt OG (2015) Supervised discriminant analysis for droplet micro-magnetofluidics. Microfluid Nanofluid 19(2):457–464PubMedGoogle Scholar
  107. 107.
    Habault D, Dery A, Leng J, Lecommandoux S, Meins JFL, Sandre O (2013) Droplet microfluidics to prepare magnetic polymer vesicles and to confine the heat in magnetic hyperthermia. IEEE Trans Magn 49(1):182–190. CrossRefGoogle Scholar
  108. 108.
    Dietzel A (2016) Microsystems for pharmatechnology. SpringerGoogle Scholar
  109. 109.
    Toepke MW, Beebe DJ (2006) PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6(12):1484–1486PubMedGoogle Scholar
  110. 110.
    Tian W-C, Finehout E (2009) Microfluidics for biological applications, vol 16. Springer Science & Business Media,Google Scholar
  111. 111.
    Tsao C-W (2016) Polymer microfluidics: simple, low-cost fabrication process bridging academic lab research to commercialized production. Micromachines 7(12):225PubMedCentralGoogle Scholar
  112. 112.
    Griffin S (2003) Fused-silica capillary-the story behind the technology. LC GC EUROPE 16(5):276–289Google Scholar
  113. 113.
    Ren K, Dai W, Zhou J, Su J, Wu H (2011) Whole-Teflon microfluidic chips. Proc Natl Acad Sci 108(20):8162–8166PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Science, Department of ChemistryKuwait UniversityKuwait CityKuwait

Personalised recommendations