Advertisement

Microchimica Acta

, 186:54 | Cite as

Voltammetric determination of caffeic acid by using a glassy carbon electrode modified with a chitosan-protected nanohybrid composed of carbon black and reduced graphene oxide

  • Kannaiyan PandianEmail author
  • Dhamodaran Mohana Soundari
  • Panneerselvam Rudra Showdri
  • Jayaprakash Kalaiyarasi
  • Subash C. B. Gopinath
Original Paper

Abstract

Differential pulse voltammetry (DPV) was employed for the determination of caffeic acid (CA) in acidic solutions by using a glassy carbon electrode (GCE) modified with a chitosan-protected nanohybrid composed of carbon black and reduced graphene oxide. Electrochemical impedance spectroscopy and cyclic voltammetry were utilized to study the interfacial electron transfer on the modified GCE. Cyclic voltammetry shows that CA exhibits a reversible redox reaction with an oxidation peak at + 0.30 V (vs. Ag/AgCl) and a reduction peak at + 0.24 V in pH 3.0 solution at a scan rate of 50 mV·s−1. Under the optimized experimental conditions, the response to CA is linear in 0.3× 10−9 to 57.3 × 10−5 M concentration range. The limit of detection is 0.03 × 10−9 M (at an S/N ratio of 3), and the electrochemical sensitivity is 5.96 μA∙ μM−1∙cm−2. This sensor for CA displays better sensitivity and a response over a wider concentration range. It was applied to the determination of CA at trace levels in various (spiked) wine samples.

Graphical abstract

Schematic presentation of a sensitive electrochemical method for the quantitative detection of caffeic acid using chitosan protected carbon black and reduced graphene oxide. It can be used for the quantitative detection of caffeic acid in wine samples.

Keywords

Electrochemical sensor Electrode preparation Interference of polyphenols Amperometry method Wine samples 

Notes

Acknowledgements

Prof. K.P. thanks Prof. M.V. Sankaranarayanan and Mrs. M. V. Beena, Department of Chemistry, IIT Madras; Chennai for permitting to use the laboratory facility for electrochemical instrument studies (EIS). We thank Dr. M. Saroja devi, Department of chemistry, Anna University for giving FT-IR facility. The authors also thank the DST-PURSE, New Delhi, and the University of Madras for permitting us to avail AFM facility.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3117_MOESM1_ESM.pdf (1.9 mb)
ESM 1 (PDF 671 kb)

References

  1. 1.
    Erk T, Hauser J, Williamson G, Renouf M, Steiling H, Dionosi F, Richling E (2014) Structure and dose-absorption relationships of coffee polyphenols. Biofactors 40:103–112.  https://doi.org/10.1002/biof.1101 CrossRefPubMedGoogle Scholar
  2. 2.
    Veljkovic JN, Pavlovic AN, Mitic SS, Tosic SB, Stojanovic GS, Kalicanin BM, Stankovic DM, Stojkovic MB, Mitic MN, Brcanovic M (2013) Evaluation of individual phenolic compounds and antioxidant properties of black, green, herbal and fruit tea infusions consumed in Serbia: spectrophotomaterial and electrochemical approaches. J. Food. Nutr Res 52:12–24Google Scholar
  3. 3.
    Sousa WR, Rocha CD, Cardoso CL, Silva DHS, Zanoni MVB (2004) Determination of the relative contribution of phenolic antioxidants in orange juice by voltammetric methods. J Food Composition Anal 17:619–633.  https://doi.org/10.1016/j.jfca.2003.09.013 CrossRefGoogle Scholar
  4. 4.
    Rebelo MJ, Rego R, Ferreira M, Oliveira MC (2013) Comparative study of the antioxidant capacity and polyphenol content of Douro wines by chemical and electrochemical methods. Food Chem 141:566–573.  https://doi.org/10.1016/j.foodchem.2013.02.120 CrossRefPubMedGoogle Scholar
  5. 5.
    Leite FRF, Santos WDJR, Kubota LT (2014) Selective determination of caffeic acid in wines with electrochemical sensor based on molecularly imprinted siloxanes. Sens Actuators B: Chem 193:238–246.  https://doi.org/10.1016/j.snb.2013.11.028 CrossRefGoogle Scholar
  6. 6.
    Weng CJ, Yen GC (2012) Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat Rev 38:76–87.  https://doi.org/10.1016/j.ctrv.2011.03.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Prasad NR, Karthikeyan A, Karthikeyan S, Reddy BV (2011) Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem 349:11–19.  https://doi.org/10.1007/s11010-010-0655-7 CrossRefGoogle Scholar
  8. 8.
    Ikeda K, Tsujimoto K, Uozaki M, Nishide M, Suzuki Y, Koyama AH, Yaasaki H (2011) Inhibition of multiplication of herpes simplex virus by caffeic acid. Int J Mol Med 28:595–598.  https://doi.org/10.3892/ijmm.2011.739 CrossRefPubMedGoogle Scholar
  9. 9.
    Peng Y, Liu F, Ye J (2005) Determination of phenolic acids and flavones in Lonicera japonica thumb by capillary electrophoresis with electrochemical detection. Electroanalysis 17:356–362.  https://doi.org/10.1002/elan.200403102 CrossRefGoogle Scholar
  10. 10.
    Carrasco A, Ortiz-Ruiz, Martinea-Gutierrez R, Tomas V, Tudela J (2015) Lavandulastoechas essential oil from Spain: Aromatic profile determined by gas chromatography-mass spectrometry, antioxidant and lipoxygenase inhibitory bioactivities, Ind Crop Prod 73:16–27.  https://doi.org/10.1016/j.indcrop.2015.03.088 .
  11. 11.
    Wang X, Wang J, Yang N (2006) Flow injection chemiluminescence detection of gallic acid in olive fruits. Food Chem 105:340–345.  https://doi.org/10.1016/j.foodchem.2006.11.061 CrossRefGoogle Scholar
  12. 12.
    Daniela PS, Marcio FB, Amold GF, Maria VBZ (2005) Application of a glassy carbon electrode modified with poly(glutamic acid) in Caffeic acid determination. Microchim Acta 151:127–134.  https://doi.org/10.1007/s00604-005-0374-z CrossRefGoogle Scholar
  13. 13.
    Mao JS, Liu HF, Yin YJ, Yao KD (2003) The properties of chitosan-gelatin membranes and scaffolds modified with hyaluronic acid by different methods. Biomaterials 24:1621–1629.  https://doi.org/10.1016/S0142-9612(02)00549-5 CrossRefPubMedGoogle Scholar
  14. 14.
    Sato T, Ishii T, Okahata Y (2001) In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials 22:2075–2080.  https://doi.org/10.1016/S0142-9612(00)00385-9 CrossRefPubMedGoogle Scholar
  15. 15.
    Zappino M, Cacciotti I, Benucci I, Nanni F, Liburdi K, Valentini F, Esti M (2015) Bromelain immobilization on microbial and animal source chitosan film for application in wine-like medium: microstructural, mechanical, and catalytic characterizations. Food Hydrocoll 45:41–47.  https://doi.org/10.1016/j.foodhyd.2014.11.001 CrossRefGoogle Scholar
  16. 16.
    Gingras M, Paradis I, Berthod F (2003) Nerve regeneration in a collagen-chitosan tissue-engineered skin transplanted on nude mice. Biomaterials 24:1653–1661.  https://doi.org/10.1016/S0142-9612(02)00572-0 CrossRefPubMedGoogle Scholar
  17. 17.
    Yang X, Tu Y, Li L, Shang S, Tao XM (2010) Well-dispersed chitosan/graphene oxide nanocomposites. Appl Mater Interface 2:1707–1713.  https://doi.org/10.1021/am100222m CrossRefGoogle Scholar
  18. 18.
    Talarico D, Arduini F, Amine A, Cacciotti I, Moscone D, Palleschi G (2016) Screen-printed electrode modified with carbon black and chitosan: a novel platform for acetylcholinesterase biosensor development. Anal Bioanal Chem 408:7299–7309.  https://doi.org/10.1007/s00216-016-9604-y CrossRefPubMedGoogle Scholar
  19. 19.
    Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysiss 22:1027–1036.  https://doi.org/10.1002/elan.200900571 CrossRefGoogle Scholar
  20. 20.
    Vilian AT, Chen SM, Chen YH, Ali MA, Al-Hemaid (2014) An electrocatalytic oxidation and voltammetric method using a chemically reduced graphene oxide film for the determination of caffeic acid. J. Colloids Interface Sci. 423: 33–40.  https://doi.org/10.1016/j.jcis.2014.02.016 .
  21. 21.
    Wang N, Lin M, Dai H, Ma H (2016) Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultra-sensitive electrochemical sensing of mercury ions based on thymine-mercury-thymine structure. Biosens Bioelectron 79:20–326.  https://doi.org/10.1016/j.bios.2015.12.056 CrossRefGoogle Scholar
  22. 22.
    Qin W, Li D, Zhang X, Yan D, Hu B, Pan L (2016) ZnS nanoparticles embedded in reduced graphene oxide as high-performance anode material of sodium ion batteries. Electrochim Acta 191:435–443.  https://doi.org/10.1016/j.electacta.2016.01.116 CrossRefGoogle Scholar
  23. 23.
    Marina B, Santos FS, Vicentini FC, Zucolotto V, Janegitz BC, Filho OF (2017) Electrochemical sensor based on reduced graphene oxide/carbon black /chitosan composite for the simultaneous determination of dopamine and paracetamol concentrations in urine samples. J Electroanal Chem 799:439–443.  https://doi.org/10.1016/j.jelechem.2017.06.052 CrossRefGoogle Scholar
  24. 24.
    Song L, Khoerunnisa F, Gao W, Dou W, Hayashi T, Katsumi K, Enda M, Ajayan PM (2013) Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide. Carbon 52:605–620.  https://doi.org/10.1016/j.carbon.2012.09.060 CrossRefGoogle Scholar
  25. 25.
    Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998.  https://doi.org/10.1016/j.carbon.2008.08.013 CrossRefGoogle Scholar
  26. 26.
    Alwarappam S, Cissell K, Dixit S, Li CZ, Mohapatra S (2012) Chitosan-modified graphene electrodes for DNA mutation analysis. J Electroanal Chem 686:69–72.  https://doi.org/10.1016/j.jelechem.2012.09.026 CrossRefGoogle Scholar
  27. 27.
    Kalaiyarsi J, Meenakshi S, Pandian K, Gopinath SCB (2017) Simultaneous voltammetric determination of vanillin and guaiacol in food products on defect free graphene nanoflake modified glassy carbon electrode. Microchim Acta 184:2131–2140.  https://doi.org/10.1007/s00604-017-2161-z CrossRefGoogle Scholar
  28. 28.
    Mani S, Sukanya R, Shen MC, Bose D, Hari VR, Lee YS (2018) Entrapment of bimetallic CoFeSe2 nanosphere on functionalized carbon nanofiber for selective and sensitive electrochemical detection of caffeic acid in wine samples. Anal Chim Acta 1006:22–32.  https://doi.org/10.1016/j.aca.2017.12.044 CrossRefGoogle Scholar
  29. 29.
    Kokulnathan T, Raja N, Chen SM, Liao WC (2017) Nanomolar electrochemical detection of caffeic acid in fortified wine samples based on gold/palladium nanoparticles decorated graphene flakes. J Colloid Interface Sci 501:77–85.  https://doi.org/10.1016/j.jcis.2017.04.042 CrossRefGoogle Scholar
  30. 30.
    Karikalan N, Karthick R, Chen SM, Chen HA (2017) A voltmmetric determination of caffeic acid in red wines based on the nitrogen doped carbon modified glassy carbon electrode. Sci Rep 7:45924.  https://doi.org/10.1038/srep45924 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang Y, Liu Y, He J, Pang Y, Gao Y, Hu Q (2013) Electrochemical behaviour of caffeic acid assayed with gold nanoparticles/grapheme nanosheets modified glassy carbon electrode. Electroanalysis 25:1230–1236.  https://doi.org/10.1002/elan.201200587 CrossRefGoogle Scholar
  32. 32.
    Velmurugan M, Balasubramanian P, Chen SM (2017) Determination of Caffeic acid in wine samples based on the electrochemical reduction of graphene oxide modified screen printed carbon electrode. Int J Electrochem Sci 12:4173–4182.  https://doi.org/10.20964/2017.05.01 CrossRefGoogle Scholar
  33. 33.
    Liu Z, Xu J, Yue R, Yang T, Gao L (2016) Facile one-pot synthesis of Au-PEDOT/rGO/GCE nanocomposite for highly sensitive detection of caffeic acid in red wine sample. Electrochim Acta 196:1–12.  https://doi.org/10.1016/j.electacta.2016.02.178 CrossRefGoogle Scholar
  34. 34.
    Thangavelu K, Raja N, Chen SM, Liao WC (2017) Nanomolar electrochemical detection of caffeic acid in fortified wine samples based on gold/palladium nanoparticles decorated graphene flakes. J Colloid Interface Sci 501:2971–2981.  https://doi.org/10.1016/j.jcis.2017.04.042 CrossRefGoogle Scholar
  35. 35.
    Lei G, Ruirui Y, Jingkun X, Zhen L, Jingdang C (2018) Pt-PEDOT/rGO nanocomposites: one-pot preparation and superior electrochemical sensing performance for caffeic acid in tea. J Electroanal Chem 816:14–20.  https://doi.org/10.1016/j.jelechem.2018.03.024 CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Liu Y, He J, Pang P, Gao Y, Hu Q (2013) Electrochemical behaviour of caffeic acid assayed with gold nanoparticles/graphene nanosheets modified glassy carbon electrode. Electroanalysis 25:1230–1236.  https://doi.org/10.1002/elan.201200587 CrossRefGoogle Scholar
  37. 37.
    Santos PD, Bergamini MF, Fogg AG, Zanoni MVB (2005) Application of a glassy carbon electrode modified with poly(glutamic acid) in Caffeic acid determination. Microchim Acta 151:127–134.  https://doi.org/10.1007/s00604-005-0374-z CrossRefGoogle Scholar
  38. 38.
    Pulg MC, Berbel XM, Blanchard CC, Marty JL (2010) Diazonium-functionalized tyrosinase-based biosensor for the detection of tea polyphenols. Microchimi Acta 171:187–193.  https://doi.org/10.1007/s00604-010-0425-y CrossRefGoogle Scholar
  39. 39.
    Bharath G, Alhseinat E, Madhu R, Mugo SM, Alwasel S, Harrath AH (2018) Facile synthesis of au@α-Fe2O3@RGO ternary nanocomposites for enhanced electrochemical sensing of caffeic acid toward biomedical applications. J Alloys compounds 750:819–827.  https://doi.org/10.1016/j.jallcom.2018.04.052 CrossRefGoogle Scholar
  40. 40.
    Vilian EAT, Chen SM, Chen YH, Ali MA, Al-Hemaid FMA (2014) An electrocatalytic oxidation and voltammetric method using a chemically reduced graphene oxide film for the determination of caffeic acid. J Colloid Interface Sci 423:33–40.  https://doi.org/10.1016/j.jcis.2014.02.016 CrossRefPubMedGoogle Scholar
  41. 41.
    Li J, Jiang J, Liu M, Xu Z, Deng P, Qian D, Tong C, Xie H, Yang C (2017) Facile synthesis of MnO2-embedded flower-like hierarchical porous carbon microspheres as an enhanced electrocatalyst for sensitive detection of caffeic acid. Anal Chim Acta 985:155–165.  https://doi.org/10.1016/j.aca.2017.07.002 CrossRefPubMedGoogle Scholar
  42. 42.
    Seruga M, Novak I, Jakobek L (2011) Determination of polyphenols content and antioxidant activity of some red wines by differential pulse voltammetry, HPLC and spectrophotometric methods. Food Chem 124:1208–1216.  https://doi.org/10.1016/j.foodchem.2010.07.047 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Inorganic ChemistryUniversity of MadrasChennaiIndia
  2. 2.Institute of Nano Electronic EngineeringUniversiti of Malaysia PerlisKangarMalaysia
  3. 3.School of Bioprocess EngineeringUniversiti of Malaysia PerlisArauMalaysia

Personalised recommendations