Advertisement

Microchimica Acta

, 186:53 | Cite as

In-situ growth of a metal organic framework composed of zinc(II), adeninate and biphenyldicarboxylate as a stationary phase for open-tubular capillary electrochromatography

  • Zhentao Li
  • Zhenkun Mao
  • Zilin ChenEmail author
Original Paper
  • 107 Downloads

Abstract

This work reports on the in-situ growth of a metal organic framework (MOF) composed of zinc(II), adeninate and biphenyldicarboxylate on the inner wall of a capillary, and the use of this MOF as a stationary phases in open-tubular capillary electrochromatography. The inner wall of a fused-silica capillary was first modified with 3-aminopropyltriethoxysilane to create surface amino sites, and then the MOF was synthesized by in-situ growth. The modified capillary was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The results proved the successful growth of the MOF. The resultant open-tubular column showed good separation selectivity towards neutral compounds, acidic and basic compounds including nonsteroidal anti-inflammatory drugs, sulfa drugs and small biomolecules. In addition, the modified column is stable and repeatable. The precisions (expressed as RSDs) of the retention time for intra-day (n = 5) and inter-day (n = 5) separations and between columns (n = 3) are less than 0.5, 1.6 and 4.7%, respectively. Conceivably, this new kind of MOF represents a most useful novel stationary phase in electrochromatographic separations.

Graphical abstract

Schematic presentation of the open-tubular column modified with bio-MOF-1 by in situ hydrothermal reaction with adeninate, Zn(II) and biphenyldicarboxylate for capillary electrochromatographic separations.

Keywords

In situ hydrothermal reaction Bio-MOF-1 Open tubular column Drug analysis Nonsteroidal anti-inflammatory drugs Sulfa drugs Biomolecules Electrochromatographic separation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81872828 and 81573384).

Supplementary material

604_2018_3115_MOESM1_ESM.docx (4.5 mb)
ESM 1 (DOCX 4.50 MB)

References

  1. 1.
    Mangelings D, Vander HY (2011) Enantioselective capillary electrochromatography: recent developments and new trends. Electrophoresis 32:2583–2601PubMedCrossRefGoogle Scholar
  2. 2.
    Guihen E, Glennon JD (2004) Recent highlights in stationary phase design for opentubular capillary electrochromatography. J Chromatogr A 1044:67–81PubMedCrossRefGoogle Scholar
  3. 3.
    Pan C, Wang W, Zhang H, Xu L, Chen X (2015) In situ synthesis of homochiral metal-organic framework in capillary column for capillary electrochromatography enantioseparation. J Chromatogr A 1388:207–216PubMedCrossRefGoogle Scholar
  4. 4.
    Kapnissi-Christodoulou CP, Zhu XF, Warner IM (2003) Analytical separations in opentubular capillary electrochromatography. Electrophoresis 24:3917–3934PubMedCrossRefGoogle Scholar
  5. 5.
    Yang L, Guihen E, Holmes JD, Loughran M, O’Sulliva GP, Glennon JD (2005) Gold nanoparticle-modified etched capillaries for open-tubular capillary electrochromatography. Anal Chem 77:1840–1846PubMedCrossRefGoogle Scholar
  6. 6.
    Qu Q, Liu D, Mangelings D, Yang C, Hu X (2010) Permanent gold nanoparticle coatings on polyelectrolyte multilayer modified capillaries for open-tubular capillary electrochromatography. J Chromatogr A 1217:6588–6594PubMedCrossRefGoogle Scholar
  7. 7.
    Liu X, Liu X, Li M, Guo L, Yang L (2013) Application of graphene as thestationary phase for open-tubular capillary electrochromatography. J Chromatogr A 1277:93–97PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang W, Zhang J, Bao T, Zhou W, Meng J, Chen Z (2013) Universal multilayer assemblies of graphene in chemically resistant microtubes for microextraction. Anal Chem 85:6846–6854PubMedCrossRefGoogle Scholar
  9. 9.
    Yu X, Zhou W, Chen Z (2017) In situ immobilization of layered double hydroxides as stationary phase for capillary electrochromatography. J Chromatogr A 1530:219–225PubMedCrossRefGoogle Scholar
  10. 10.
    Bao T, Tang P, Kong D, Mao Z, Chen Z (2016) Polydopamine supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation. J Chromatogr A 1445:140–148PubMedCrossRefGoogle Scholar
  11. 11.
    Kong D, Bao T, Chen Z (2017) In situ synthesis of the imine-based covalent organic framework LZU1 on the inner walls of capillaries for electrochromatographic separation of nonsteroidal drugs and amino acids. Microchim Acta 184:1169–1176CrossRefGoogle Scholar
  12. 12.
    Bao T, Tang P, Mao Z, Chen Z (2016) An immobilized carboxyl containing metal-organic framework-5 stationary phase for opentubular capillary electrochromatography. Talanta 154:360–366PubMedCrossRefGoogle Scholar
  13. 13.
    Bao T, Zhang J, Zhang W, Chen Z (2015) Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography. J Chromatogr A 1381:239–246PubMedCrossRefGoogle Scholar
  14. 14.
    Li J, Sculley JL, Zhou H (2011) Metal-organic frameworks for separations. Chem Rev 112:869–932PubMedCrossRefGoogle Scholar
  15. 15.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230–1444CrossRefGoogle Scholar
  16. 16.
    Gu Z, Yang C, Chang N, Yan X (2012) Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45:734–745PubMedCrossRefGoogle Scholar
  17. 17.
    Czaja AU, Trukhan N, Müller U (2009) Industrial applications of metal-organic frameworks. Chem Soc Rev 38:1284–1293PubMedCrossRefGoogle Scholar
  18. 18.
    Allendorf M, Bauer C, Bhakta R, Houk R (2009) Luminescent metal-organic frameworks. Chem Soc Rev 38:1330–1352PubMedCrossRefGoogle Scholar
  19. 19.
    Huang H, Lin C, Wu C, Cheng Y, Lin C (2013) Metal organic frameworkorganic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography. Anal Chim Acta 779:96–103PubMedCrossRefGoogle Scholar
  20. 20.
    Chang N, Gu Z, Wang H, Yan X (2011) Metal-organic-framework-based tandem molecular sieves as a dual platform for selective microextraction and high-resolution gas chromatographic separation of n-alkanes in complex matrixes. Anal Chem 83:7094–7101PubMedCrossRefGoogle Scholar
  21. 21.
    Xie S, Zhang Z, Wang Z, Yuan L (2011) Chiral metal-organic frameworks forhigh-resolution gas chromatographic separations. J Am Chem Soc 133:11892–11895PubMedCrossRefGoogle Scholar
  22. 22.
    Liu S, Yang C, Wang S, Yan X (2012) Metal-organic frameworks for reverse-phase high-performance liquid chromatography. Analyst 137:816–818PubMedCrossRefGoogle Scholar
  23. 23.
    Fan L, Yan X (2012) Evaluation of isostructural metal-organic frameworks coated capillary columns for the gas chromatographic separation of alkane isomers. Talanta 99:944–950PubMedCrossRefGoogle Scholar
  24. 24.
    An JY, Geib SJ, Rosi NL (2009) Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J Am Chem Soc 131:8376–8377PubMedCrossRefGoogle Scholar
  25. 25.
    An JY, Farha OK, Hupp JT, Pohl E, Yeh JI, Rosi NL (2012) Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nat Commun 3:604PubMedCrossRefGoogle Scholar
  26. 26.
    An JY, Shade CM, Chengelis-Czegan DA, Petoud S, Rosi NL (2011) Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J Am Chem Soc 133:1220–1223PubMedCrossRefGoogle Scholar
  27. 27.
    Bohrman JA, Carreon MA (2012) Synthesis and CO2/CH4 separation performance of Bio-MOF-1 membranes. Chem Commun 48:5130–5132CrossRefGoogle Scholar
  28. 28.
    Yu J, Cui Y, Xu H, Yang Y, Wang Z, Chen B, Qian G (2013) Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nat Commun 4:2719PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Huo S, Yu J, Fu Y, Zhou P (2016) In situ hydrothermal growth of a dual-ligand metal-organic framework film on a stainless steel fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental water samples. RSC Adv 6:14042–14048CrossRefGoogle Scholar
  30. 30.
    Qu Q, Gu C, Hu X (2012) Capillary coated with graphene and graphene oxide sheets as stationary phase for capillary electrochromatography and capillary liquid chromatography. Anal Chem 84:8880–8890PubMedCrossRefGoogle Scholar
  31. 31.
    Tang P, Bao T, Chen Z (2016) Novel Zn-based MOFs stationary phase with large pores for capillary electrochromatography. Electrophoresis 37:2181–2189PubMedCrossRefGoogle Scholar
  32. 32.
    Pai Y, Liu C (2002) Capillary electrochromatographic separation of non-steroidal anti-inflammatory drugs with a histidine bonded phase. J Chromatogr A 982:293–301PubMedCrossRefGoogle Scholar
  33. 33.
    Tsume Y, Langguth P, Garcia-Arieta A, Amidon GL (2012) In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen. Biopharm Drug Dispos 33:366–377PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kong D, Chen Z (2018) Open-tubular capillary electrochromatography using carboxylatopillar[5]arene as stationary phase. Electrophoresis 39:363–369PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical SciencesWuhanChina
  2. 2.State Key Laboratory of Transducer Technology, Chinese Academy of SciencesBeijingChina

Personalised recommendations