Microchimica Acta

, 186:52 | Cite as

Determination of 17β-estradiol by surface-enhanced Raman spectroscopy merged with hybridization chain reaction amplification on Au@Ag core-shell nanoparticles

  • Li Yao
  • Yulin Li
  • Kewen Cheng
  • Daodong Pan
  • Jianguo XuEmail author
  • Wei ChenEmail author
Original Paper


The authors describe an aptamer-based assay for 17β-estradiol. It relies on the combined use of surface enhanced Raman scattering (SERS) and hybridization chain reaction (HCR). The aptamer against 17β-estradiol is applied as the recognition probes, and this results in excellent specificity. Specific recognition of target 17β-estradiol induce the freedom of DNA 2, which will open the stem-loop structure of probe 1 on the Au@Ag and form the partial dsDNA structure. With the nicking enzyme, the partial dsDNA will be hydrolyzed and the reside ssDNA on Au@Ag will form a small stem-loop structure. With the help of the other probe 2 modified Au@Ag and pre-immobilized probe 3 on the well of the microplate, an enzyme-free HCR can occur and tremendous Au@Ag can be assembled along the formed dsDNA in HCR, which can act as the excellent substrate for Raman measurement and greatly amplify the Raman signal of R6G on the Au@Ag. Afterwards, the key factor, ratio between probe 2-Au@Ag (P2) and probe1-Au@Ag (P1), affects the detection sensitivity is systematically optimized for the best sensing performance. The SERS signal of R6G, best measured at 1651 cm−1, increases linearly in the wide range from 1 pM to 10 nM. The detection limit can be as low as 0.1 pM.

Graphical abstract

Schematic presentation of an aptamer-based surface enhanced Raman scattering method for accurate detection of 17β-estradiol, which is integrated with hybridization chain reaction for signal amplification and sensitivity improvement.


Estrogen Aptamer SERS Hybridization chain reaction Signal amplification Gold nanoparticle Environment monitoring Food safety 



This work is financially supported by the grant of 2017YFF0208600, the NSFC Grant of 21475030, Open Foundation of Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization of EWPL201701, the China Agriculture Research System-48 (CARS-48), Anhui Provincial Modern Argo-industry Tech. Research System (NYCYTX-2016-84) and the Fundamental Research Fund for central university (Grants No. 2017HGPA0162, JZ2018HGTA0205, PA2017GDQT0018).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3114_MOESM1_ESM.doc (154 kb)
ESM 1 (DOC 154 kb)


  1. 1.
    Fan LF, Zhao GH, Shi HJ, Liu MC, Wang YB, Ke HY (2014) A femtomolar level and highly selective 17β-estradiol photoelectrochemical aptasensor applied in environmental water samples analysis. Environ Sci Technol 48:5754–5761CrossRefGoogle Scholar
  2. 2.
    Huang HL, Shi S, Gao X, Gao RR, Zhu Y, Wu XW, Zang RM, Yao TM (2016) A universal label-free fluorescent aptasensor based on Ru complex and quantum dots for adenosine, dopamine and 17β-estradiol detection. Biosens Bioelectron 79:198–204CrossRefGoogle Scholar
  3. 3.
    Bianchi F, Mattarozzi M, Careri M, Mangia A, Musci M, Grasselli F, Bussolati S, Basini G (2010) An SPME–GC–MS method using an octadecyl silica fibre for the determination of the potential angiogenesis modulators 17β-estradiol and 2-methoxyestradiol in culture media. Anal Bioanal Chem 396:2639–2645CrossRefGoogle Scholar
  4. 4.
    Shi Y, Peng DD, Shi CH, Zhang X, Xie YT, Liu B (2011) Selective determination of trace 17β-estradiol in dairy and meat samples by molecularly imprinted solid-phase extraction and HPLC. Food Chem 126:1916–1925CrossRefGoogle Scholar
  5. 5.
    Majima K, Fukui T, Yuan J, Wang G, Matsumoto K (2002) Quantitative measurement of 17 beta-estradiol and estriol in river water by time-resolved fluoroimmunoassay. Anal Sci 18:869–874CrossRefGoogle Scholar
  6. 6.
    Lacorn M, Fleischer K, Willig S, Gremmel S, Steinhart H, Clausa R (2005) Use of biotinylated 17β-estradiol in enzyme-immunoassay development: spacer length and chemical structure of the bridge are the main determinants in simultaneous streptavidin–antibody binding. J Immunol Methods 297:225–236CrossRefGoogle Scholar
  7. 7.
    Yildirim N, Long F, Gao C, He M, Shi HC, Gu AZ (2012) Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples. Environ Sci Technol 46:3288–3294CrossRefGoogle Scholar
  8. 8.
    Li Y, Zhao XR, Li P, Huang YF, Wang J, Zhang JM (2015) Highly sensitive Fe3O4 nanobeads/graphene-based molecularly imprinted electrochemical sensor for 17β-estradiol in water. Anal Chim Acta 884:106–113CrossRefGoogle Scholar
  9. 9.
    Huang KJ, Liu YJ, Zhang JZ (2015) Aptamer-based electrochemical assay of 17β-estradiol using a glassy carbon electrode modified with copper sulfide nanosheets and gold nanoparticles, and applying enzyme-based signal amplification. Microchim Acta 182:409–417CrossRefGoogle Scholar
  10. 10.
    Barhoumi A, Halas NJ (2010) Label-free detection of DNA hybridization using surface enhanced Raman spectroscopy. J Am Chem Soc 132:12792–12793CrossRefGoogle Scholar
  11. 11.
    Fu X, Chu Y, Zhao K, Li J, Deng AP (2017) Ultrasensitive detection of the β-adrenergic agonist brombuterol by a SERS-based lateral flow immunochromatographic assay using flower-like gold-silver core-shell nanoparticles. Microchim Acta 184:1711–1719CrossRefGoogle Scholar
  12. 12.
    Abell JL, Garren JM, Driskell JD, Tripp RA, Zhao YP (2012) Label-free detection of micro-RNA hybridization using surface-enhanced Raman spectroscopy and least-squares analysis. J Am Chem Soc 134:12889–12892CrossRefGoogle Scholar
  13. 13.
    Braun G, Lee SJ, Dante M, Nguyen TQ, Moskovits M, Reich N (2007) Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J Am Chem Soc 129:6378–6379CrossRefGoogle Scholar
  14. 14.
    Kim K, Lee HK, Kim NH (2006) Silver-particle-based surface-enhanced Raman scattering spectroscopy for biomolecular sensing and recognition. Anal Bioanal Chem 388:81–88CrossRefGoogle Scholar
  15. 15.
    Albuquerque CDL, Nogueira RB, Poppi RJ (2016) Determination of 17β-estradiol and noradrenaline in dog serum using surface-enhanced Raman spectroscopy and random Forest. Microchem J 128:95–101CrossRefGoogle Scholar
  16. 16.
    Chao J, Cao WF, Su S, Weng LX, Song SP, Fan CH, Wang LH (2016) Nanostructure-based surface-enhanced Raman scattering biosensors for nucleic acids and proteins. J Mater Chem B 4:1757–1769CrossRefGoogle Scholar
  17. 17.
    Guerrini L, Graham D (2012) Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced Raman spectroscopy applications. Chem Soc Rev 41:7085–70107CrossRefGoogle Scholar
  18. 18.
    Fleischmann M, Hendra PJ, Mcquillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166CrossRefGoogle Scholar
  19. 19.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Duyne RPV (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRefGoogle Scholar
  20. 20.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured Plasmonic sensors. Chem Rev 108:494–521CrossRefGoogle Scholar
  21. 21.
    Anema JR, Brolo AG, Marthandam P, Gordon R (2008) Enhanced Raman scattering from nanoholes in a copper film. J Phys Chem C 112:17051–17055CrossRefGoogle Scholar
  22. 22.
    Min Q, Santos MJL, Girotto EM, Brolo AG, Gordon R (2008) Localized Raman enhancement from a double-hole nanostructure in a metal film. J Phys Chem C 112:15098–15101CrossRefGoogle Scholar
  23. 23.
    Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ (2006) Synthesis of Ag core Au shell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. J Phys Chem B 110:4002–4006CrossRefGoogle Scholar
  24. 24.
    Shen A, Chen LF, Xie W, Hu JC, Zeng A, Richards R, Hu JM (2010) Triplex Au–Ag–C core–shell nanoparticles as a novel Raman label. Adv Funct Mater 20:969–975CrossRefGoogle Scholar
  25. 25.
    Trefry JC, Monahan JL, Weaver KM, Meyerhoefer AJ (2010) Size selection and concentration of silver nanoparticles by tangential flow ultrafiltration for SERS-based biosensors. J Am Chem Soc 132:10970–10972CrossRefGoogle Scholar
  26. 26.
    Taylor RW, Lee TC, Scherman OA, Esteban R, Aizpurua J, Huang FM, Baumberg JJ, Mahajan S (2011) Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "glue". ACS Nano 5:3878–3887CrossRefGoogle Scholar
  27. 27.
    Liu YT, Zhou J, Wang BB, Jiang T, Ho HPH, Mormile P (2015) Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance. Phys Chem Chem Phys 17:6819–6826CrossRefGoogle Scholar
  28. 28.
    Yu Z, Smith ME, Zhang J, Zhou Y, Zhang P (2018) Determination of trichloroethylene by using self-referenced SERS and gold-core/silver-shell nanoparticles. Microchim Acta 185:330CrossRefGoogle Scholar
  29. 29.
    Zhu T, Hu Y, Yang K, Dong N, Yu M, Jiang N (2018) A novel SERS nanoprobe based on the use of core-shell nanoparticles with embedded reporter molecule to detect E. coli O157:H7 with high sensitivity. Microchim Acta 185:30CrossRefGoogle Scholar
  30. 30.
    Zhao YX, Chen F, Li Q, Wang LH, Fan CH (2015) Isothermal amplification of nucleic acids. Chem Rev 115:12491–12545CrossRefGoogle Scholar
  31. 31.
    Huang L, Zheng L, Chen YJ, Xue F, Cheng L, Adeloju SB, Chen W (2015) A novel GMO biosensor for rapid ultrasensitive and simultaneous detection of multiple DNA components in GMO products. Biosens Bioelectron 66:431–437CrossRefGoogle Scholar
  32. 32.
    Sun MM, Du LY, Gao SQ, Bao YH, Wang SH (2010) Determination of 17-oestradiol by fluorescence immunoassay with streptavidin-conjugated quantum dots as label. Steroids 75:400–403CrossRefGoogle Scholar
  33. 33.
    Liu JC, Bai WH, Niu SC, Zhu C, Yang SM, Chen AL (2014) Highly sensitive colorimetric detection of 17beta-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Sci Rep 4:7571CrossRefGoogle Scholar
  34. 34.
    Wang R, Chon H, Lee S, Cheng ZY, Hong SH, Yoon YH, Choo J (2016) Using surface-enhanced Raman scattering based immunoassays for the clinical diagnosis of precocious puberty. ACS Appl Mater Interfaces 8:10665–10672CrossRefGoogle Scholar
  35. 35.
    Alsager OA, Kumar S, Zhu BC, Travas-Sejdic J, McNatty KP, Hodgkiss JM (2015) The effect of shortening DNA aptamer sequences. Anal Chem 87:4201–4209CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Food Science and Biological Engineering, Engineering Research Center of Bio-process, MOEHefei University of TechnologyHefeiChina
  2. 2.Hubei Key Laboratory of Edible Wild Plants Conservation and UtilizationHubei Normal UniversityHuangshiChina
  3. 3.Faculty of Marine ScienceNingbo UniversityNingboChina

Personalised recommendations