Microchimica Acta

, 186:44 | Cite as

Manganese-doped zinc oxide hollow balls for chemiresistive sensing of acetone vapors

  • Dongting Wang
  • Wenan Shang
  • Bingxue Zhang
  • Chunjie JiangEmail author
  • Fengdong QuEmail author
  • Minghui YangEmail author
Original Paper


Both pure and Mn(II)-doped ZnO hollow structures were synthesized by a solvothermal reaction, and their phase structures, morphologies and elemental composition were characterized. SEM and TEM observations show the pure ZnO and the Mn(II)-doped ZnO balls to possess similar hollow structure with a particle size of about 1.5 μm. Their sensing properties were investigated, and the composite containing 1 atom% of Mn(II) (1% Mn-ZnO) is found be display the highest selectivity for acetone. The detection limit is 100 ppm acetone at 234 °C which is 4.6 times lower than that of the pure ZnO. In addition, the response time is shorter.

Graphical abstract

ZnO and Mn-doped ZnO hollow balls were prepared by a hydrothermal method, and their gas-sensing properties were investigated. Zinc(II) oxide doped with 1 atom% Mn(II) demonstrated an outstanding sensing behavior towards acetone vapors.


ZnO Mn-doped ZnO Hollow balls Gas sensor Acetone vapors 



This work is supported by Key Program of the Chinese Academy of Sciences through Grant KFZD-SW-320, NSF China through Grant 21471147. M. Yang would like to thank for the Ningbo 3315 program.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3108_MOESM1_ESM.doc (1 mb)
ESM 1 (DOC 1057 kb)


  1. 1.
    Yang X, Hao X, Liu T, Liu F, Wang B, Ma C, Liang X, Yang C, Zhu H, Zheng J, He T, Lu G (2018) CeO2-based mixed potential type acetone sensor using La1-xSrxCoO3 sensing electrode. Sensors Actuators B Chem 269:118–126Google Scholar
  2. 2.
    Puchalska P, Crawford PA (2017) Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab 25(2):262–284PubMedPubMedCentralGoogle Scholar
  3. 3.
    Spanel P, Smith D (2011) Progress in SIFT-MS: breath analysis and other applications. Mass Spectrom Rev 30(2):236–267PubMedGoogle Scholar
  4. 4.
    Smith D, Spanel P (2011) Ambient analysis of trace compounds in gaseous media by SIFT-MS. Analyst 136(10):2009–2032PubMedGoogle Scholar
  5. 5.
    Guntner AT, Sievi NA, Theodore SJ, Gulich T, Kohler M, Pratsinis SE (2017) Noninvasive body fat burn monitoring from exhaled acetone with Si-doped WO3-sensing nanoparticles. Anal Chem 89(19):10578–10584PubMedGoogle Scholar
  6. 6.
    Guntner AT, Pineau NJ, Mochalski P, Wiesenhofer H, Agapiou A, Mayhew CA, Pratsinis SE (2018) Sniffing entrapped humans with sensor arrays. Anal Chem 90(8):4940–4945PubMedPubMedCentralGoogle Scholar
  7. 7.
    Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira ON Jr, Lin L (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185(4):213Google Scholar
  8. 8.
    Dey A (2018) Semiconductor metal oxide gas sensors: a review. Mater Sci Eng B 229:206–217Google Scholar
  9. 9.
    Liu C, Zhao L, Wang B, Sun P, Wang Q, Gao Y, Liang X, Zhang T, Lu G (2017) Acetone gas sensor based on NiO/ZnO hollow spheres: fast response and recovery, and low (ppb) detection limit. J Colloid Interface Sci 495:207–215PubMedGoogle Scholar
  10. 10.
    Singh AK, Thool GS, Bangal PR, Madhavendra SS, Singh SP (2014) Low temperature Mn doped ZnO Nanorod Array: synthesis and its photoluminescence behavior. Ind Eng Chem Res 53(22):9383–9390Google Scholar
  11. 11.
    R S G MN, Patil VL, S P CM, Kawasaki S, Patil PS, Hayakawa Y (2018) Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature. Sensors Actuators B Chem 255:672–683Google Scholar
  12. 12.
    Mao Y, Ma S, Li X, Wang C, Li F, Yang X, Zhu J, Ma L (2014) Effect of Mn doping on the microstructures and sensing properties of ZnO nanofibers. Appl Surf Sci 298:109–115Google Scholar
  13. 13.
    Suematsu K, Watanabe K, Tou A, Sun Y, Shimanoe K (2018) Ultraselective toluene-gas sensor: Nanosized gold loaded on zinc oxide nanoparticles. Anal Chem 90(3):1959–1966PubMedGoogle Scholar
  14. 14.
    Ghosh S, Roychaudhuri C, Bhattacharya R, Saha H, Mukherjee N (2014) Palladium-silver-activated ZnO surface: highly selective methane sensor at reasonably low operating temperature. ACS Appl Mater Interfaces 6(6):3879–3887PubMedGoogle Scholar
  15. 15.
    Renitta A, Vijayalakshmi K (2017) High performance hydrogen sensor based on Mn implanted ZnO nanowires array fabricated on ITO substrate. Mater Sci Eng C 77:245–256Google Scholar
  16. 16.
    Han N, Liu H, Wu X, Li D, Chai L, Chen Y (2011) Pure and Sn-, Ga- and Mn-doped ZnO gas sensors working at different temperatures for formaldehyde, humidity, NH3, toluene and CO. Appl Phys A 104(2):627–633Google Scholar
  17. 17.
    Qu F, Shang W, Wang D, Du S, Thomas T, Ruan S, Yang M (2018) Coordination polymer-derived multishelled mixed Ni-co oxide microspheres for robust and selective detection of xylene. ACS Appl Mater Interfaces 10(17):15314–15321PubMedGoogle Scholar
  18. 18.
    Putri NA, Fauzia V, Iwan S, Roza L, Umar AA, Budi S (2018) Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates. Appl Surf Sci 439:285–297Google Scholar
  19. 19.
    Yan X, Hu D, Li H, Li L, Chong X, Wang Y (2011) Nanostructure and optical properties of M doped ZnO (M=Ni, Mn) thin films prepared by sol–gel process. Phys B Condens Matter 406(20):3956–3962Google Scholar
  20. 20.
    Stefan M, Ghica D, Nistor SV, Maraloiu AV, Plugaru R (2017) Mn2+ ions distribution in doped sol–gel deposited ZnO films. Appl Surf Sci 396:1880–1889Google Scholar
  21. 21.
    Oo WMH, Saraf LV, Engelhard MH, Shutthanandan V, Bergman L, Huso J, McCluskey MD (2009) Suppression of conductivity in Mn-doped ZnO thin films. J Appl Phys 105(1):013715Google Scholar
  22. 22.
    Sankar Ganesh R, Durgadevi E, Navaneethan M, Patil VL, Ponnusamy S, Muthamizhchelvan C, Kawasaki S, Patil PS, Hayakawa Y (2017) Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres. J Alloys Compd 721:182–190Google Scholar
  23. 23.
    Li JH, Shen DZ, Zhang JY, Zhao DX, Li BS, Lu YM, Liu YC, Fan XW (2006) Magnetism origin of Mn-doped ZnO nanoclusters. J Magn Magn Mater 302(1):118–121Google Scholar
  24. 24.
    Ponnusamy R, Selvaraj SC, Ramachandran M, Murugan P, Nambissan PMG, Sivasubramanian D (2016) Diverse spectroscopic studies and first-principles investigations of the zinc vacancy mediated ferromagnetism in Mn-doped ZnO nanoparticles. Cryst Growth Des 16(7):3656–3668Google Scholar
  25. 25.
    Patterson S, Arora P, Price P, Dittmar JW, Das VK, Pink M, Stein B, Morgan DG, Losovyj Y, Koczkur KM, Skrabalak SE, Bronstein LM (2017) Oriented attachment is a major control mechanism to form nail-like Mn-doped ZnO nanocrystals. Langmuir 33(51):14709–14717PubMedGoogle Scholar
  26. 26.
    Gallegos MV, Peluso MA, Thomas H, Damonte LC, Sambeth JE (2016) Structural and optical properties of ZnO and manganese-doped ZnO. J Alloys Compd 689:416–424Google Scholar
  27. 27.
    Chen W, Wang J, Wang M-r (2007) Influence of doping concentration on the properties of ZnO:Mn thin films by sol–gel method. Vacuum 81(7):894–898Google Scholar
  28. 28.
    Hu D, Liu X, Deng S, Liu Y, Feng Z, Han B, Wang Y, Wang Y (2014) Structural and optical properties of Mn-doped ZnO nanocrystalline thin films with the different dopant concentrations. Physica E 61:14–22Google Scholar
  29. 29.
    Yoo R, Lee D, Cho S, Lee W (2018) Doping effect on the sensing properties of ZnO nanoparticles for detection of 2-chloroethyl ethylsulfide as a mustard simulant. Sensors Actuators B Chem 254:1242–1248Google Scholar
  30. 30.
    Ilyas U, Rawat RS, Wang Y, Tan TL, Lee P, Chen R, Sun HD, Li F, Zhang S (2012) Alteration of Mn exchange coupling by oxygen interstitials in ZnO:Mn thin films. Appl Surf Sci 258(17):6373–6378Google Scholar
  31. 31.
    Cao HT, Pei ZL, Gong J, Sun C, Huang RF, Wen LS (2004) Preparation and characterization of Al and Mn doped ZnO (ZnO: (Al, Mn)) transparent conducting oxide films. J Solid State Chem 177(4–5):1480–1487Google Scholar
  32. 32.
    Wang C, Cui X, Liu J, Zhou X, Cheng X, Sun P, Hu X, Li X, Zheng J, Lu G (2015) Design of superior ethanol gas sensor based on al-doped NiO nanorod-flowers. ACS Sens 1(2):131–136Google Scholar
  33. 33.
    Zhang R, Liu X, Zhou T, Wang L, Zhang T (2018) Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor. J Colloid Interface Sci 524:76–83PubMedGoogle Scholar
  34. 34.
    Al-Hardan NH, Abdullah MJ, Abdul Aziz A, Ahmad H, Low LY (2010) ZnO thin films for VOC sensing applications. Vacuum 85(1):101–106Google Scholar
  35. 35.
    Lee C-Y, Chiang C-M, Wang Y-H, Ma R-H (2007) A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection. Sensors Actuators B Chem 122(2):503–510Google Scholar
  36. 36.
    Nayak AK, Ghosh R, Santra S, Guha PK, Pradhan D (2015) Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds. Nanoscale 7(29):12460–12473PubMedGoogle Scholar
  37. 37.
    Shi J, Hu G, Sun Y, Geng M, Wu J, Liu Y, Ge M, Tao J, Cao M, Dai N (2011) WO3 nanocrystals: synthesis and application in highly sensitive detection of acetone. Sensors Actuators B Chem 156(2):820–824Google Scholar
  38. 38.
    Feng C, Li X, Ma J, Sun Y, Wang C, Sun P, Zheng J, Lu G (2015) Facile synthesis and gas sensing properties of In2O3–WO3 heterojunction nanofibers. Sensors Actuators B Chem 209:622–629Google Scholar
  39. 39.
    Güntner AT, Pineau NJ, Chie D, Krumeich F, Pratsinis SE (2016) Selective sensing of isoprene by Ti-doped ZnO for breath diagnostics. J Mater Chem B 4(32):5358–5366Google Scholar
  40. 40.
    Wang X-j, Wang W, Liu Y-L (2012) Enhanced acetone sensing performance of Au nanoparticles functionalized flower-like ZnO. Sensors Actuators B Chem 168:39–45Google Scholar
  41. 41.
    Wang W, Tian Y, Wang X, He H, Xu Y, He C, Li X (2013) Ethanol sensing properties of porous ZnO spheres via hydrothermal route. J Mater Sci 48(8):3232–3238Google Scholar
  42. 42.
    Song P, Wang Q, Yang Z (2012) Acetone sensing characteristics of ZnO hollow spheres prepared by one-pot hydrothermal reaction. Mater Lett 86:168–170Google Scholar
  43. 43.
    Huang J, Wu Y, Gu C, Zhai M, Yu K, Yang M, Liu J (2010) Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property. Sensors Actuators B Chem 146(1):206–212Google Scholar
  44. 44.
    Liu L, Li S, Zhuang J, Wang L, Zhang J, Li H, Liu Z, Han Y, Jiang X, Zhang P (2011) Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning. Sensors Actuators B Chem 155(2):782–788Google Scholar
  45. 45.
    Zhou X, Cheng X, Zhu Y, Elzatahry AA, Alghamdi A, Deng Y, Zhao D (2018) Ordered porous metal oxide semiconductors for gas sensing. Chin Chem Lett 29(3):405–416Google Scholar
  46. 46.
    Ahmed F, Arshi N, Anwar MS, Danish R, Koo BH (2013) Mn-doped ZnO nanorod gas sensor for oxygen detection. Curr Appl Phys 13:S64–S68Google Scholar
  47. 47.
    Lee WI, Bonyani M, Lee JK, Lee C, Choi S-B (2018) Volatile organic compound sensing properties of MoO3–ZnO core–shell nanorods. Curr Appl Phys 18:S60–S67Google Scholar
  48. 48.
    Mhlongo GH, Shingange K, Tshabalala ZP, Dhonge BP, Mahmoud FA, Mwakikunga BW, Motaung DE (2016) Room temperature ferromagnetism and gas sensing in ZnO nanostructures: influence of intrinsic defects and Mn, Co, Cu doping. Appl Surf Sci 390:804–815Google Scholar
  49. 49.
    Sivalingam D, Gopalakrishnan JB, Rayappan JBB (2012) Structural, morphological, electrical and vapour sensing properties of Mn doped nanostructured ZnO thin films. Sensors Actuators B Chem 166-167:624–631Google Scholar
  50. 50.
    Zhu L, Zeng W (2017) Room-temperature gas sensing of ZnO-based gas sensor: a review. Sensors Actuators A Phys 267:242–261Google Scholar
  51. 51.
    Li Y, Wang S, Hao P, Tian J, Cui H, Wang X (2018) Soft-templated formation of double-shelled ZnO hollow microspheres for acetone gas sensing at low concentration/near room temperature. Sensors Actuators B Chem 273:751–759Google Scholar
  52. 52.
    Liu X, Ma T, Xu Y, Sun L, Zheng L, Schmidt OG, Zhang J (2018) Rolled-up SnO2 nanomembranes: a new platform for efficient gas sensors. Sensors Actuators B Chem 264:92–99Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringLiaoning Normal UniversityDalianPeople’s Republic of China
  2. 2.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina

Personalised recommendations