Advertisement

Microchimica Acta

, 186:2 | Cite as

Improved performance of lateral flow immunoassays for alpha-fetoprotein and vanillin by using silica shell-stabilized gold nanoparticles

  • Xuewen Lu
  • Ting mei
  • Qi Guo
  • Wenjing Zhou
  • Xiaomei Li
  • Jitao Chen
  • Xinke Zhou
  • Ning Sun
  • Zhiyuan Fang
Original Paper

Abstract

The sensitivity of lateral flow assays (LFA) was increased 30-fold by making use of spherical core-shell gold-silica nanoparticles (AuNP@SiO2 NPs). They can be prepared by silylation of surfactant stabilized AuNPs. The AuNP@SiO2 NPs are highly stable and can be used to label antibodies at virtually any concentration. The detection limit of an LFA for alpha-fetoprotein (AFP) can be decreased from 10 ng·mL−1 to 300 pg·mL−1 which makes it comparable to an enzyme-linked immunosorbent assay. To demonstrate the applicability to an immunoassay, a sandwich assay was developed for vanillin by covalent modification of the AuNP@SiO2 NPs with antibody. By using the method, vanillin can be detected visually in milk powder samples in concentrations as low as 100 ng·g−1. With unique optical property and great stability, this AuNP@SiO2 endows great potential in biosensing applications.

Graphical abstract

Controlled growth of AuNP@SiO2. The newly prepared AuNP has a negative hydration layer. This layer is further surrounded by a bilayer of CTAB through electrostatic attraction. The hydrophobic inner layer enables the access and assembling of APTES and MTTS. After the hydrolysis of siloxane, a thin layer of silica shell is formed around AuNP.

Keywords

Core-shell gold nanoparticle AFP Vanillin Lateral flow assay 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81602608, 21402204 and 31671933, 81703333), Nanshan Scholar Program of Guangzhou Medical University (B185006006008 and B185006006009), Natural Science Foundation of Guangdong (020204003).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3107_MOESM1_ESM.docx (322 kb)
ESM 1 (DOCX 322 kb)

References

  1. 1.
    Nie L, Liu F, Ma P, Xiao X (2014) Applications of gold nanoparticles in optical biosensors. J Biomed Nanotechnol 10(10):2700–2721CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Zhang X (2015) Gold nanoparticles: recent advances in the biomedical applications. Cell Biochem Biophys 72(3):771–775CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Liu A, Ye B (2013) Application of gold nanoparticles in biomedical researches and diagnosis. Clin Lab 59(1–2):23–36PubMedPubMedCentralGoogle Scholar
  4. 4.
    Fu X, Chu Y, Zhao K, Li J, Deng A (2017) Ultrasensitive detection of the β-adrenergic agonist brombuterol by a SERS-based lateral flow immunochromatographic assay using flower-like gold-silver core-shell nanoparticles. Microchim Acta 184(6):1711–1719CrossRefGoogle Scholar
  5. 5.
    Wang W, Liu L, Song S, Xu L, Kuang H, Zhu J, Xu C (2017) Identification and quantification of eight Listeria monocytogene serotypes from Listeria spp. using a gold nanoparticle-based lateral flow assay. Microchim Acta 184(3):715–724CrossRefGoogle Scholar
  6. 6.
    Gambinossi F, Mylon SE, Ferri JK (2015) Aggregation kinetics and colloidal stability of functionalized nanoparticles. Adv Colloid Interf Sci 222:332–349CrossRefGoogle Scholar
  7. 7.
    Li D, He Q, Li J (2009) Smart core/shell nanocomposites: intelligent polymers modified gold nanoparticles. Adv Colloid Interf Sci 149(1–2):28–38CrossRefGoogle Scholar
  8. 8.
    Kharisov BI, Kharissova OV, Yacaman MJ, Ortiz MU (2009) State of the art of the bi- and trimetallic nanoparticles on the basis of gold and iron. Recent Pat Nanotechnol 3(2):81–98CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Gautier J, Allard-Vannier E, Herve-Aubert K, Souce M, Chourpa I (2013) Design strategies of hybrid metallic nanoparticles for theragnostic applications. Nanotechnology 24(43):432002CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Shi Q, Huang J, Sun Y, Deng R, Teng M, Li Q, Yang Y, Hu X, Zhang Z, Zhang G (2018) A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay. Microchim Acta 185(2):84CrossRefGoogle Scholar
  11. 11.
    Shamsipur M, Safavi A, Mohammadpour Z, Ahmadi R (2016) Highly selective aggregation assay for visual detection of mercury ion based on competitive binding of sulfur-doped carbon nanodots to gold nanoparticles and mercury ions. Microchim Acta 183(7):2327–2335CrossRefGoogle Scholar
  12. 12.
    Liu M, Wang Z, Zong S, Chen H, Zhu D, Wu L, Hu G, Cui Y (2014) SERS detection and removal of mercury(II)/silver(I) using oligonucleotide-functionalized core/shell magnetic silica sphere@Au nanoparticles. ACS Appl Mater Interfaces 6(10):7371–7379CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Liu W, Zhu Z, Deng K, Li Z, Zhou Y, Qiu H, Gao Y, Che S, Tang Z (2013) Gold nanorod@chiral mesoporous silica core-shell nanoparticles with unique optical properties. J Am Chem Soc 135(26):9659–9664CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ke X, Wang D, Chen C, Yang A, Han Y, Ren L, Li D, Wang H (2014) Co-enhancement of fluorescence and singlet oxygen generation by silica-coated gold nanorods core-shell nanoparticle. Nanoscale Res Lett 9(1):2492CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Liu G, Li Q, Ni W, Zhang N, Zheng X, Wang Y, Shao D, Tai G (2015) Cytotoxicity of various types of gold-mesoporous silica nanoparticles in human breast cancer cells. Int J Nanomedicine 10:6075–6087PubMedPubMedCentralGoogle Scholar
  16. 16.
    Li WP, Liao PY, Su CH, Yeh CS (2014) Formation of oligonucleotide-gated silica shell-coated Fe(3)O(4)-Au core-shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform. J Am Chem Soc 136(28):10062–10075CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Chu Z, Yin C, Zhang S, Lin G, Li Q (2013) Surface plasmon enhanced drug efficacy using core-shell Au@SiO2 nanoparticle carrier. Nanoscale 5(8):3406–3411CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lin J, Zhang H, Niu S (2015) Simultaneous determination of carcinoembryonic antigen and α-fetoprotein using an ITO immunoelectrode modified with gold nanoparticles and mesoporous silica. Microchim Acta 182(3):719–726CrossRefGoogle Scholar
  19. 19.
    Zhu X, Wu L, Mungra DC, Xia S, Zhu J (2012) Au@SiO2 core-shell nanoparticles for laser desorption/ionization time of flight mass spectrometry. Analyst 137(10):2454–2458CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Chungang Wang ZM, Wang T, Zhongmin S (2006) Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing. Adv Funct Mater 16(13):1673–1678CrossRefGoogle Scholar
  21. 21.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Song JT, Zhang XS, Qin MY, Zhao YD (2015) One-pot two-step synthesis of core-shell mesoporous silica-coated gold nanoparticles. Dalton Trans 44(17):7752–7756CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Liao H, Hafner JH (2005) Gold nanorod bioconjugates. Chem Mater 17(18):4636–4641CrossRefGoogle Scholar
  24. 24.
    Fang Z, Huang J, Lie P, Xiao Z, Ouyang C, Wu Q, Wu Y, Liu G, Zeng L (2010) Lateral flow nucleic acid biosensor for Cu2+ detection in aqueous solution with high sensitivity and selectivity. Chem Commun (Cambridge, England) 46(47):9043–9045CrossRefGoogle Scholar
  25. 25.
    Takahashi M, Sakamaki S, Fujita A (2013) Simultaneous analysis of guaiacol and vanillin in a vanilla extract by using high-performance liquid chromatography with electrochemical detection. Biosci Biotechnol Biochem 77(3):595–600CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Goodner KL, Jella P, Rouseff RL (2000) Determination of vanillin in orange, grapefruit, tangerine, lemon, and lime juices using GC-olfactometry and GC-MS/MS. J Agric Food Chem 48(7):2882–2886CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Bononi M, Quaglia G, Tateo F (2015) Easy extraction method to evaluate delta13C vanillin by liquid chromatography-isotopic ratio mass spectrometry in chocolate bars and chocolate snack foods. J Agric Food Chem 63(19):4777–4781CrossRefPubMedCentralGoogle Scholar
  28. 28.
    de Jager LS, Perfetti GA, Diachenko GW (2007) Determination of coumarin, vanillin, and ethyl vanillin in vanilla extract products: liquid chromatography mass spectrometry method development and validation studies. J Chromatogr A 1145(1–2):83–88CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Timotheou-Potamia M, Calokerinos AC (2007) Chemiluminometric determination of vanillin in commercial vanillin products. Talanta 71(1):208–212CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Minematsu S, Xuan GS, Wu XZ (2013) Determination of vanillin in vanilla perfumes and air by capillary electrophoresis. J Environ Sci (China) 25(Suppl 1):S8–S14CrossRefGoogle Scholar
  31. 31.
    Wu J, Yang Z, Chen N, Zhu W, Hong J, Huang C, Zhou X (2015) Vanillin-molecularly targeted extraction of stir bar based on magnetic field induced self-assembly of multifunctional Fe3O4@Polyaniline nanoparticles for detection of vanilla-flavor enhancers in infant milk powders. J Colloid Interface Sci 442:22–29CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Huang L, Hou K, Jia X, Pan H, Du M (2014) Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection. Mater Sci Eng C Mater Biol Appl 38:39–45CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Cantalapiedra A, Gismera MJ, Sevilla MT, Procopio JR (2014) Sensitive and selective determination of phenolic compounds from aromatic plants using an electrochemical detection coupled with HPLC method. Phytochemical analysis : PCA 25(3):247–254CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Sivakumar M, Sakthivel M, Chen SM (2017) Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples. J Colloid Interface Sci 490:719–726CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
  2. 2.Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
  3. 3.State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat-sen UniversityGuangzhouChina
  4. 4.Clinical Trials CenterHong Kong University-ShenZhen hospitalShenzhenChina

Personalised recommendations