Advertisement

Microchimica Acta

, 185:570 | Cite as

Gold/WS2 nanocomposites fabricated by in-situ ultrasonication and assembling for photoelectrochemical immunosensing of carcinoembryonic antigen

  • Ye Hu
  • Yajiao Huang
  • Zhengguo Wang
  • Yanying Wang
  • Xiaoxue Ye
  • WingLeung Wong
  • Chunya Li
  • Dong Sun
Original Paper
  • 85 Downloads

Abstract

Tungsten disulfide (WS2) nanosheets were obtained by exfoliating WS2 bulk crystals in N-methylpyrrolidone by ultrasonication. Gold nanoparticles (GNPs) were synthesized by in-situ ultrasonication of sodium citrate and HAuCl4 while fabricating the WS2 nanosheets. In this way, the GNPs were self-assembled on WS2 nanosheets to form a GNPs/WS2 nanocomposite through interaction between sulfur and gold atoms. The photoelectrochemical response of WS2 nanosheets is significantly enhanced after integration of the GNPs. The GNPs/WS2 nanocomposite was coated onto a glassy carbon electrode (GCE) to construct a sensing interface which then was modified with an antibody against the carcinoembryonic antigen (CEA) to obtain a photoelectrochemical immunosensor for CEA. Under optimized conditions, the decline in relative photocurrent is linearly related to the logarithm of the CEA concentration in the range from 0.001 to 40 ng mL−1. The detection limit is 0.5 pg mL−1 (at S/N = 3). The assay is sensitive, selective, stable and reproducible. It was applied to the determination of CEA in clinical serum samples.

Graphical abstract

Schematic presentation of the fabrication of Au/WS2 nanocomposites by in-situ ultrasonication and the procedure for the CEA photoelectrochemical immunosensor preparation, and the photocurrent response towards the carcinoembryonic antigen.

Keywords

Photoelectrochemistry Immunosensor CEA Transition metal dichalcogenides Nanosheets Gold nanoparticles 

Notes

Acknowledgements

The authors gratefully acknowledge the financial supports from The National Natural Science Foundation of China (No. 21874157, 21675175, 21445003 and 21275166), Major Projects of Technical Innovation of Hubei Province (No. 2017ACA172) and The Natural Science Foundation of Hubei Province (No. 2018CFB617 and 2015CFA092).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3100_MOESM1_ESM.docx (971 kb)
ESM 1 (DOCX 970 kb)

References

  1. 1.
    Grunnet M, Sorensen J (2012) Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer 76(2):138–143CrossRefPubMedGoogle Scholar
  2. 2.
    Limbut W, Kanatharana P, Mattiasson B, Asawatreratanakul P, Thavarungkul P (2006) A reusable capacitive immunosensor for carcinoembryonic antigen (CEA) detection using thiourea modified gold electrode. Anal Chim Acta 561(1–2):55–61CrossRefGoogle Scholar
  3. 3.
    Naghibalhossaini F, Ebadi P (2006) Evidence for CEA release from human colon cancer cells by an endogenous GPI-PLD enzyme. Cancer Lett 234(2):158–167CrossRefPubMedGoogle Scholar
  4. 4.
    Shi G, Cao J, Zhang J, Huang K, Liu Y, Chen Y, Ren S (2014) Aptasensor based on tripetalous cadmium sulfide-graphene electrochemiluminescence for the detection of carcinoembryonic antigen. Analyst 139(22):5827–5834CrossRefPubMedGoogle Scholar
  5. 5.
    Li C, Yang Y, Wu D, Li T, Yin Y, Li G (2016) Improvement of enzyme-linked immunosorbent assay for the multicolor detection of biomarkers. Chem Sci 7(5):3011–3016CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang Y, Lu F, Yan Z, Wu D, Ma H, Du B, Wei Q (2015) Electrochemiluminescence immunosensing strategy based on the use of au@ag nanorods as a peroxidase mimic and NH4CoPO4 as a supercapacitive supporter: application to the determination of carcinoembryonic antigen. Microchim Acta 182(7–8):1421–1429CrossRefGoogle Scholar
  7. 7.
    Chen Y, Chu WR, Liu W, Guo XY, Jin Y, Li BX (2018) Paper-based chemiluminescence immunodevice for the carcinoembryonic antigen by employing multi-enzyme carbon nanosphere signal enhancement. Microchim Acta 185:187CrossRefGoogle Scholar
  8. 8.
    Kuroki M, Yamaguchi A, Koga Y, Matsuoka Y (1983) Antigenic reactivities of purified preparations of carcinoembryonic antigen (CEA) and related normal antigens using four different radioimmunoassay systems for CEA. J Immunol Methods 60(12):221–233CrossRefPubMedGoogle Scholar
  9. 9.
    Yang WT, Zhou XX, Zhao JM, Xu WJ (2018) A cascade amplification strategy of catalytic hairpin assembly and hybridization chain reaction for the sensitive fluorescent assay of the model protein carcinoembryonic antigen. Microchim Acta 185:100CrossRefGoogle Scholar
  10. 10.
    Feng D, Lu X, Dong X, Ling Y, Zhang Y (2013) Label-free electrochemical immunosensor for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanoparticles. Microchim Acta 180(9–10):767–774CrossRefGoogle Scholar
  11. 11.
    Qin Z, Xu W, Chen S, Chen J, Qiu JF, Li CR (2018) Electrochemical immunoassay for the carcinoembryonic antigen based on the use of a glassy carbon electrode modified with an octahedral Cu2O-gold nanocomposite and staphylococcal protein for signal amplification. Microchim Acta 185:266CrossRefGoogle Scholar
  12. 12.
    Hasanzadeh M, Shadjou N (2017) Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review. Microchim Acta 184:389–414CrossRefGoogle Scholar
  13. 13.
    Dong Y, Cao J, Liu Y, Ma S (2017) A novel immunosensing platform for highly sensitive prostate specific antigen detection based on dual-quenching of photocurrent from CdSe sensitized TiO2 electrode by gold nanoparticles decorated polydopamine nanospheres. Biosens Bioelectron 91:246–252CrossRefPubMedGoogle Scholar
  14. 14.
    Han Z, Luo M, Chen L, Chen J, Li C (2017) A photoelectrochemical immunosensor for detection of -fetoprotein based on au-ZnO flower-rod heterostructures. Appl Surf Sci 402:429–435CrossRefGoogle Scholar
  15. 15.
    Zhang X, Guo Y, Liu M, Zhang S (2013) Photoelectrochemically active species and photoelectrochemical biosensors. RSC Adv 3(9):2846–2857CrossRefGoogle Scholar
  16. 16.
    Zhu H, Fan G, Abdel-Halim E, Zhang J, Zhu J (2016) Ultrasensitive photoelectrochemical immunoassay for CA19-9 detection based on CdSe@ZnS quantum dots sensitized TiO2NWs/au hybrid structure amplified by quenching effect of Ab2@V2+ conjugates. Biosens Bioelectron 77:339–346CrossRefGoogle Scholar
  17. 17.
    Zhao W, Xu J, Chen H (2016) Photoelectrochemical aptasensing. TrAC Trends Anal Chem 82:307–315CrossRefGoogle Scholar
  18. 18.
    Zhao W, Xu J, Chen H (2015) Photoelectrochemical bioanalysis: the state of the art. Chem Soc Rev 44(3):729–741CrossRefGoogle Scholar
  19. 19.
    Zhao W, Xu J, Chen H (2017) Photoelectrochemical enzymatic biosensors. Biosens Bioelectron 92:294–304CrossRefGoogle Scholar
  20. 20.
    Wang YY, Yu XX, Ye XX, Wu KB, Wu TS, Li CY (2016) Resonance energy transfer between ZnCdHgSe quantum dots and gold nanorods enhancing photoelectrochemical immunosensing of prostate specific antigen. Anal Chim Acta 943:106–113CrossRefPubMedGoogle Scholar
  21. 21.
    Zang Y, Lei JP, Hao Q, Ju HX (2016) CdS/MoS2 heterojunction-based photoelectrochemical DNA biosensor via enhanced chemiluminescence excitation. Biosens Bioelectron 77:557–564CrossRefPubMedGoogle Scholar
  22. 22.
    Wang GL, Xu JJ, Chen HY (2009) Progress in the studies of photoelectrochemical sensors. Sci China Ser B 52(11):1789–1800CrossRefGoogle Scholar
  23. 23.
    Yue Z, Lisdat F, Parak W, Hickey S, Tu L, Sabir N, Dorfs D, Bigal N (2013) Quantum-dot-based Photoelectrochemical sensors for chemical and biological detection. ACS Appl Mater Interfaces 5(8):2800–2814CrossRefPubMedGoogle Scholar
  24. 24.
    Chen YX, Wu X, Huang KJ (2018) A sandwich-type electrochemical biosensing platform for microRNA-21 detection using carbon sphere-MoS2 and catalyzed hairpin assembly for signal amplification. Sensors Actuators B Chem 270:179–186CrossRefGoogle Scholar
  25. 25.
    Chhowalla M, Shin H, Eda G, Li L-J, Loh K, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275CrossRefPubMedGoogle Scholar
  26. 26.
    Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126CrossRefGoogle Scholar
  27. 27.
    Hao LL, Gu HJ, Duan N, Wu SJ, Ma XY, Xia Y, Tao Z, Wang ZP (2017) An enhanced chemiluminescence resonance energy transfer aptasensor based on rolling circle amplification and WS2 nanosheet for Staphylococcus aureus detection. Anal Chim Acta 959:83–90CrossRefPubMedGoogle Scholar
  28. 28.
    Shuai HL, Huang KJ, Chen YX (2016) A layered tungsten disulfide/acetylene black composite based DNA biosensing platform coupled with hybridization chain reaction for signal amplification. J Mater Chem B 4(6):1186–1196CrossRefGoogle Scholar
  29. 29.
    Zuo XW, Zhang HG, Zhu Q, Wang WF, Feng J, Chen XG (2016) A dual-color fluorescent biosensing platform based on WS2 nanosheet for detection of Hg2+ and ag+. Biosens Bioelectron 85:464–470CrossRefPubMedGoogle Scholar
  30. 30.
    Du XJ, Dai LM, Jiang D, Li HN, Hao N, You TY, Mao HP, Wang K (2017) Gold nanrods plasmon-enhanced photoelectrochemical aptasensing based on hematite/N-doped graphene films for ultrasensitive analysis of 17 β-estradiol. Biosens Bioelectron 91:706–713CrossRefPubMedGoogle Scholar
  31. 31.
    Tan Y, Wang YY, Li MS, Ye XX, Wu TS, Li CY (2017) Enhanced photoelectrochemical immunosensing of cardiac troponin I based on energy transfer between N-acetyl-L-cysteine capped CdAgTe quantum dots and dodecahedral au nanoparticles. Biosens Bioelectron 91:741–746CrossRefPubMedGoogle Scholar
  32. 32.
    Ye XX, Li MS, Hu Y, Wang ZG, Wang YY, Deng HP, Xiong XX, Li CY, Sun D (2018) Sensitive photoelectrochemical immunosensor for squamous cell carcinoma antigen based on MoSe2 nanosheets and hollow gold nanospheres. Sensors Actuators B Chem 275:199–205CrossRefGoogle Scholar
  33. 33.
    Lin ZZ, Lv SZ, Zhang KY, Tang DP (2017) Optical transformation of a CdTe quantum dot-based paper sensor for a visual fluorescence immunoassay induced by dissolved silver ions. J Mater Chem B 5(4):826–833CrossRefGoogle Scholar
  34. 34.
    Liu W, Guo YM, Zhao M, Li HF, Zhang ZJ (2015) Ring-oven washing technique integrated paper-based immunodevice for sensitive detection of cancer biomarker. Anal Chem 87(15):7951–7957CrossRefPubMedGoogle Scholar
  35. 35.
    Zhao D, Wang Y, Nie GM (2016) Electrochemical immunosensor for the carcinoembryonic antigen based on a nanocomposite consisting of reduced graphene oxide, gold nanoparticles and poly(indole-6-carboxylic acid). Microchim Acta 183(11):1–8CrossRefGoogle Scholar
  36. 36.
    Lu WB, Qian C, Bi LY, Tao L, Ge J, Dong J, Qian WP (2014) Biomolecule-based formaldehyde resin microspheres loaded with au nanoparticles: a novel immunoassay for detection of tumor markers in human serum. Biosens Bioelectron 53:346–354CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Ye Hu
    • 1
    • 2
  • Yajiao Huang
    • 1
  • Zhengguo Wang
    • 3
  • Yanying Wang
    • 2
  • Xiaoxue Ye
    • 2
  • WingLeung Wong
    • 4
  • Chunya Li
    • 2
  • Dong Sun
    • 1
  1. 1.School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
  2. 2.Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials ScienceSouth-Central University for NationalitiesWuhanChina
  3. 3.Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
  4. 4.School of Chemical and Environmental Engineering, International Healthcare Innovation Institute (Jiangmen)Wuyi UniversityJiangmenChina

Personalised recommendations