Advertisement

Microchimica Acta

, 185:566 | Cite as

A highly stable black phosphorene nanocomposite for voltammetric detection of clenbuterol

  • Yu Ge
  • María Belén Camarada
  • Lanjiao Xu
  • Mingren Qu
  • Huan Liang
  • Erlong Zhao
  • Mingfang Li
  • Yangping Wen
Original Paper

Abstract

A nanocomposite was prepared from graphene-like two-dimensional black phosphorene (BP, an allotrope of phosphorus) and nafion (Nf) treated with isopropanol (IP). A glassy carbon electrode (GCE) modified with this nanocomposite was found to be a viable sensor for voltammetric determination of clenbuterol (CLB). Unlike previously reported pure BP, the BP nanocomposite was stable towards water and oxygen. Its morphology, structure, electrochemically active surface area and electrochemical stability were investigated. The BP-Nf (IP) modified GCE displayed good electrochemical stability and electrocatalytic capacity with a low working potential of 0.94 V (vs. SCE), excellent peak current response for CLB in a linear concentration range of 0.06–24 μM with a detection limit of 3.7 nM (3σ/m) and a sensitivity of 0.14 μA·μM−1·cm−2 under optimal conditions. A sensing mechanism for the electro-oxidation of CLB was suggested and verified by density functional theory calculations under imitation of aqueous solution conditions. The sensor was successfully applied to the determination of CLB in bovine meat and bovine serum samples.

Graphical abstract

Highly-stable black phosphorene (BP) nanocomposite based on Nafion (Nf) was used to modify a glassy carbon electrode (GCE). It is shonw to be a viable electrochemical platform for sensitive voltammetric determination of trace clenbuterol (CLB) in bovine beef and bovine serum.

Keywords

Electrochemical sensor β-Agonist Graphene analogue Sensing mechanism Theory calculations Electrochemical stability Edible cattle product 

Notes

Acknowledgements

This study was funded by National Beef Cattle Industry Technology & System (CARS-38), National Natural Science Foundation of China (51662014), Outstanding Young Talent Program of Jiangxi Province (20171BCB23042), Fondecyt Chile Project Regular (1180023), Powered@NLHPC (ECM-02), Development and Nutrition of Feed for Beef Cattle in Guangchang County (09005392).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3084_MOESM1_ESM.doc (4.2 mb)
ESM 1 (DOC 4270 kb)

References

  1. 1.
    Ji R, Chen S, Xu W, Qin Z, Qiu JF, Li CR (2018) A voltammetric immunosensor for clenbuterol based on the use of a MoS2-AuPt nanocomposite. Microchim Acta 185(4):209CrossRefGoogle Scholar
  2. 2.
    Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE (2011) Electrochemical sensors and biosensors. Anal Chem 84:685–707CrossRefGoogle Scholar
  3. 3.
    Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093CrossRefGoogle Scholar
  4. 4.
    Zhu C, Yang G, Li H, Du D, Lin Y (2014) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249CrossRefGoogle Scholar
  5. 5.
    Guo RX, Xu Q, Wang DY, Hu XY (2008) Trace determination of clenbuterol with an MWCNT-Nafion nanocomposite modified electrode. Microchim Acta 161:265–272CrossRefGoogle Scholar
  6. 6.
    Gaichore RR, Srivastava AK (2012) Multiwalled carbon nanotube-4-tert-butyl calix [6] arene composite electrochemical sensor for clenbuterol hydrochloride determination by means of differential pulse adsorptive stripping voltammetry. J Appl Electrochem 42:979–987CrossRefGoogle Scholar
  7. 7.
    Zhao C, Jin GP, Chen LL, Li Y, Yu B (2011) Preparation of molecular imprinted film based on chitosan/nafion/nano-silver/poly quercetin for clenbuterol sensing. Food Chem 129:595–600CrossRefGoogle Scholar
  8. 8.
    Miao P, Han K, Sun H, Yin J, Zhao J, Wang B, Tang Y (2014) Melamine functionalized silver nanoparticles as the probe for electrochemical sensing of clenbuterol. ACS Appl Mater Interfaces 6:8667–8672CrossRefGoogle Scholar
  9. 9.
    Yang X, Feng B, Yang P, Ding Y, Chen Y, Fei J (2014) Electrochemical determination of toxic ractopamine at an ordered mesoporous carbon modified electrode. Food Chem 145:619–624CrossRefGoogle Scholar
  10. 10.
    Wang L, Yang R, Chen J, Li J, Qu L, Harrington PDB (2014) Sensitive voltammetric sensor based on isopropanol-Nafion-PSS-GR nanocomposite modified glassy carbon electrode for determination of Clenbuterol in pork. Food Chem 164:113–118CrossRefGoogle Scholar
  11. 11.
    Wu C, Sun D, Li Q, Wu K (2012) Electrochemical sensor for toxic ractopamine and clenbuterol based on the enhancement effect of graphene oxide. Sensors Actuators B Chem 168:178–184CrossRefGoogle Scholar
  12. 12.
    Lin X, Ni Y, Kokot S (2013) A novel electrochemical sensor for the analysis of β-agonists: the poly (acid chrome blue K)/graphene oxide-nafion/glassy carbon electrode. J Hazard Mater 260:508–517CrossRefGoogle Scholar
  13. 13.
    Su S, Chao J, Pan D, Wang L, Fan C (2015) Electrochemical sensors using two-dimensional layered nanomaterials. Electroanal 27:1062–1072CrossRefGoogle Scholar
  14. 14.
    Gusmao R, Sofer Z, Pumera M (2017) Black phosphorus rediscovered: from bulk material to monolayers. Angew Chem Int Ed 56:8052–8072CrossRefGoogle Scholar
  15. 15.
    Abate Y, Akinwande D, Gamage S, Wang H, Snure M, Poudel N, Cronin SB (2018) Recent progress on stability and passivation of black phosphorus. Adv Mater.  https://doi.org/10.1002/adma.201704749 CrossRefGoogle Scholar
  16. 16.
    Han X, Han J, Liu C, Sun J (2018) Promise and challenge of phosphorus in science, technology, and application. Adv Funct Mater.  https://doi.org/10.1002/adfm.201803471 CrossRefGoogle Scholar
  17. 17.
    Lei W, Liu G, Zhang J, Liu M (2017) Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem Soc Rev 46:3492–3509CrossRefGoogle Scholar
  18. 18.
    Zhang J, Ding W, Zhang Z, Xu J, Wen Y (2016) Preparation of black phosphorus-PEDOT: PSS hybrid semiconductor composites with good film-forming properties and environmental stability in water containing oxygen. RSC Adv 6:76174–76182CrossRefGoogle Scholar
  19. 19.
    Xiang Y, Camarada MB, Wen YP, Wu H, Chen JY, Li MF, Liao XN (2018) Simple voltammetric analyses of ochratoxin a in food samples using highly-stable and anti-fouling black phosphorene nanosensor. Electrochim Acta 282:490–498CrossRefGoogle Scholar
  20. 20.
    Donarelli M, Ottaviano L, Giancaterini L, Fioravanti G, Perrozzi F, Cantalini C (2016) Exfoliated black phosphorus gas sensing properties at room temperature. 2D Mater 3:025002CrossRefGoogle Scholar
  21. 21.
    Miao J, Cai L, Zhang S, Nah J, Yeom J, Wang C (2017) Air-stable humidity sensor using few-layer black phosphorus. ACS Appl Mater Interfaces 9:10019–10026CrossRefGoogle Scholar
  22. 22.
    Zhou Y, Zhang M, Guo Z, Miao L, Han ST, Wang Z, Peng Z (2017) Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater Horiz 4:997–1019CrossRefGoogle Scholar
  23. 23.
    Yi Y, Yu XF, Zhou W, Wang J, Chu PK (2017) Two-dimensional black phosphorus: synthesis, modification, properties, and applications. Mat Sci Eng R 120:1–33CrossRefGoogle Scholar
  24. 24.
    Thangaraj R, Kumar AS (2012) Graphitized mesoporous carbon modified glassy carbon electrode for selective sensing of xanthine, hypoxanthine and uric acid. Anal Methods-UK 4:2162–2171CrossRefGoogle Scholar
  25. 25.
    Toro R, Bruno-Colmenárez J, de Delgado GD, Delgado JM (2013) Structural characterization of a new form of clenbuterol, a well-known decongestant and bronchodilator also used as a performance-enhancing drug. Powder Diffract 28:63–67CrossRefGoogle Scholar
  26. 26.
    McGrath GJ, O'Kane E, Smyth WF, Tagliaro F (1996) Investigation of the electrochemical oxidation of clenbuterol at a porous carbon electrode, and its application to the determination of this β-agonist in bovine hair by liquid chromatography with coulometric detection. Anal Chim Acta 322:159–166CrossRefGoogle Scholar
  27. 27.
    Shen L, Li Z, He P (2010) Electrochemical behavior of β2-agonists at graphite nanosheet modified electrodes. Electrochem Commun 12:876–881CrossRefGoogle Scholar
  28. 28.
    Hernández-Jover T, Izquierdo-Pulido M, Veciana-Nogués MT, Vidal-Carou MC (1996) Ion-pair high-performance liquid chromatographic determination of biogenic amines in meat and meat products. J Agric Food Chem 44:2710–2715CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Yu Ge
    • 1
    • 2
  • María Belén Camarada
    • 3
  • Lanjiao Xu
    • 1
  • Mingren Qu
    • 1
  • Huan Liang
    • 1
  • Erlong Zhao
    • 1
  • Mingfang Li
    • 2
  • Yangping Wen
    • 2
  1. 1.Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed DevelopmentJiangxi Agricultural UniversityNanchangChina
  2. 2.Institute of Functional Materials and Agricultural Applied ChemistryJiangxi Agricultural UniversityNanchangPeople’s Republic of China
  3. 3.Centro de Nanotecnología Aplicada, Facultad de CienciasUniversidad MayorSantiagoChile

Personalised recommendations