Advertisement

Microchimica Acta

, 185:496 | Cite as

Colorimetric determination of dopamine by exploiting the enhanced oxidase mimicking activity of hierarchical NiCo2S4-rGO composites

  • Yanying Wang
  • Li Yang
  • Yaqin Liu
  • Qingbiao Zhao
  • Fang Ding
  • Ping Zou
  • Hanbing Rao
  • Xianxiang Wang
Original Paper
  • 206 Downloads

Abstract

A composite consisting of NiCo2S4 and reduced graphene oxide (rGO) was prepared via a hydrothermal process. Compared to individual NiCo2S4 nanomaterials or reduced graphene oxide, the composite exhibits enhanced oxidase-like activity. It is found that dopamine (DA) inhibits the ability of NiCo2S4-rGO to oxidize the substrate 3,3′,5′,5′-tetramethylbenzidine (TMB) to form blue colored ox-TMB. Based on these findings, a colorimetric method for determination of DA was worked out. The absorption, best measured at 652 nm, increases linearly in the 0.5–100 μM DA concentration range, and the limit of detection is 0.42 μM. This method was successfully applied to the detection of DA in spiked human serum samples.

Graphical abstract

A hierarchical NiCo2S4-rGO composite was prepared through two-step hydrothermal process. It exhibits enhanced oxidase-like activity which, however, is inhibited by dopamine (DA). Hence, less blue colored ox-TMB is formed by oxidation of 3,3′,5,5′-tetramethylbenzidine in the presence of dopamine.

Keywords

Hybrid nanostructure Oxidase mimetic Synergistic effect Colorimetric assay Human serum sample 

Notes

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (21305097) and the 2016 undergraduate innovation training program of Sichuan Agricultural University (04054674).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3035_MOESM1_ESM.doc (7 mb)
ESM 1 (DOC 7182 kb)

References

  1. 1.
    Chiu C, Moss CF (2007) The role of the external ear in vertical sound localization in the free flying bat, Eptesicus fuscus. J Acoust Soc Am 121(4):2227–2235CrossRefGoogle Scholar
  2. 2.
    Leaf-nosed bat, in: Encyclopædia Britannica, Encyclopædia Britannica Online, 2009Google Scholar
  3. 3.
    Castro SL, Zigmond MJ (2001) Stress-induced increase in extracellular dopamine in striatum: role of glutamatergic action via N-methyl-D-aspartate receptors in substantia nigra. Brain Res 901(1–2):47–54CrossRefGoogle Scholar
  4. 4.
    Vonk J, Shackelford TK (2012) The Oxford handbook of comparative evolutionary psychology. In: Nathan PE (ed) Oxford library of psychology. Oxford University Press, New York, p 574Google Scholar
  5. 5.
    Sajid M, Nazal MK, Mansha M, Alsharaa A, Jillani SMS, Basheer C (2016) Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review. Trends Anal Chem 76:15–29Google Scholar
  6. 6.
    Park SJ, Lee SH, Yang H, Park CS, Lee C-S, Kwon OS, Park TH, Jang J (2016) Human dopamine receptor-conjugated multidimensional conducting polymer nanofiber membrane for dopamine detection. Acs Appl Mater Inter 8(42):28897–28903CrossRefGoogle Scholar
  7. 7.
    Shen J, Sun C, Wu X (2017) Silver nanoprisms-based Tb(III) fluorescence sensor for highly selective detection of dopamine. Talanta 165:369–376CrossRefGoogle Scholar
  8. 8.
    Cheng Y, Wu J, Guo C, Li X-G, Ding B, Li Y (2017) A facile water-stable MOF-based "off-on" fluorescent switch for label-free detection of dopamine in biological fluid. J Mater Chem B 5(13):2524–2535CrossRefGoogle Scholar
  9. 9.
    Xu B, Su Y, Li L, Liu R, Lv Y (2017) Thiol-functionalized single-layered MoS2 nanosheet as a photoluminescence sensing platform via charge transfer for dopamine detection. Sensor Actuat B-Chem 246:380–388CrossRefGoogle Scholar
  10. 10.
    Diaz-Diestra D, Thapa B, Beltran-Huarac J, Weiner BR, Morell G (2017) L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity. Biosens Bioelectron 87:693–700CrossRefGoogle Scholar
  11. 11.
    Schumacher F, Chakraborty S, Kleuser B, Gulbins E, Schwerdtle T, Aschner M, Bornhorst J (2015) Highly sensitive isotope-dilution liquid-chromatography–electrospray ionization–tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans. Talanta 144:71–79CrossRefGoogle Scholar
  12. 12.
    Cudjoe E, Pawliszyn J (2014) Optimization of solid phase microextraction coatings for liquid chromatography mass spectrometry determination of neurotransmitters. J Chromatogr A 1341:1–7CrossRefGoogle Scholar
  13. 13.
    Wang H-H, Chen X-J, Li W-T, Zhou W-H, Guo X-C, Kang W-Y, Kou D-X, Zhou Z-J, Meng Y-N, Tian Q-W, Wu S-X (2018) ZnO nanotubes supported molecularly imprinted polymers arrays as sensing materials for electrochemical detection of dopamine. Talanta 176:573–581CrossRefGoogle Scholar
  14. 14.
    Ping J, Wu J, Wang Y, Ying Y (2012) Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens Bioelectron 34(1):70–76CrossRefGoogle Scholar
  15. 15.
    Mashhadizadeh MH, Yousefi T, Nozad Golikand A (2012) A nickel hexacyanoferrate and poly(1-naphthol) hybrid film modified electrode used in the selective electroanalysis of dopamine. Electrochim Acta 59:321–328CrossRefGoogle Scholar
  16. 16.
    Li Y, Gu Y, Zheng B, Luo L, Li C, Yan X, Zhang T, Lu N, Zhang Z (2017) A novel electrochemical biomimetic sensor based on poly(cu-AMT) with reduced graphene oxide for ultrasensitive detection of dopamine. Talanta 162:80–89CrossRefGoogle Scholar
  17. 17.
    Zhang L, Qv S, Wang Z, Cheng J (2003) Determination of dopamine in single rat pheochromocytoma cell by capillary electrophoresis with amperometric detection. Electrochim Acta 792(2):381–385Google Scholar
  18. 18.
    Wang X-X, Wu Q, Shan Z, Huang Q-M (2011) BSA-stabilized au clusters as peroxidase mimetics for use in xanthine detection. Biosens Bioelectron 26(8):3614–3619CrossRefGoogle Scholar
  19. 19.
    Yang H, Yang R, Zhang P, Qin Y, Chen T, Ye F (2017) A bimetallic (co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim Acta 184(12):4629–4635CrossRefGoogle Scholar
  20. 20.
    Chen Q, Liang C, Zhang X, Huang Y (2018) High oxidase-mimic activity of Fe nanoparticles embedded in an N-rich porous carbon and their application for sensing of dopamine. Talanta 182:476–483CrossRefGoogle Scholar
  21. 21.
    Hammes-Schiffer S, Benkovic SJ (2006) Relating protein motion to catalysis. Annu Rev Biochem 75(1):519–541CrossRefGoogle Scholar
  22. 22.
    Xing M, Wang J (2016) Nanoscaled zero valent iron/graphene composite as an efficient adsorbent for co(II) removal from aqueous solution. J Colloid Interf Sci 474:119–128CrossRefGoogle Scholar
  23. 23.
    Zhu Y, Yang Z, Chi M, Li M, Wang C, Lu X (2018) Synthesis of hierarchical Co3O4@NiO core-shell nanotubes with a synergistic catalytic activity for peroxidase mimicking and colorimetric detection of dopamine. Talanta 181:431–439CrossRefGoogle Scholar
  24. 24.
    Yang Z, Ma F, Zhu Y, Chen S, Wang C, Lu X (2017) A facile synthesis of CuFe2O4/Cu9S8/PPy ternary nanotubes as peroxidase mimics for the sensitive colorimetric detection of H2O2 and dopamine. Dalton T 46(34):11171–11179CrossRefGoogle Scholar
  25. 25.
    Dutta S, Ray C, Mallick S, Sarkar S, Sahoo R, Negishi Y, Pal T (2015) A gel-based approach to design hierarchical CuS decorated reduced graphene oxide nanosheets for enhanced peroxidase-like activity leading to colorimetric detection of dopamine. J Phys Chem C 119(41):23790–23800CrossRefGoogle Scholar
  26. 26.
    Yang Z, Zhu Y, Chi M, Wang C, Wei Y, Lu X (2018) Fabrication of cobalt ferrite/cobalt sulfide hybrid nanotubes with enhanced peroxidase-like activity for colorimetric detection of dopamine. J Colloid Interf Sci 511:383–391CrossRefGoogle Scholar
  27. 27.
    Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093CrossRefGoogle Scholar
  28. 28.
    Qian J, Yang X, Yang Z, Zhu G, Mao H, Wang K (2015) Multiwalled carbon nanotube@reduced graphene oxide nanoribbon heterostructure: synthesis, intrinsic peroxidase-like catalytic activity, and its application in colorimetric biosensing. J Mater Chem B 3(8):1624–1632CrossRefGoogle Scholar
  29. 29.
    Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184(2):323–342CrossRefGoogle Scholar
  30. 30.
    He W, Wu X, Liu J, Hu X, Zhang K, Hou S, Zhou W, Xie S (2010) Design of AgM bimetallic alloy nanostructures (M = au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem Mater 22(9):2988–2994CrossRefGoogle Scholar
  31. 31.
    Juan Y, Chang Y, Xiaoming F, Changtai Z, Jieshan Q (2015) Ultrafast self-assembly of graphene oxide-induced monolithic NiCo–carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv Funct Mater 25(14):2109–2116CrossRefGoogle Scholar
  32. 32.
    Yang J, Duan X, Guo W, Li D, Zhang H, Zheng W (2014) Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors. Nano Energy 5:74–81CrossRefGoogle Scholar
  33. 33.
    Yanzhou J, Yan G, Guangdi N, Maoqiang C, Zezhou Y, Ce W, Yen W, Xiaofeng L (2017) Synthesis of rGO/Cu8S5/PPy composite nanosheets with enhanced peroxidase-like activity for sensitive colorimetric detection of H2O2 and phenol. Part Part Syst Charact 34(3):1600233Google Scholar
  34. 34.
    He W, Liu Y, Yuan J, Yin J-J, Wu X, Hu X, Zhang K, Liu J, Chen C, Ji Y, Guo Y (2011) Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 32(4):1139–1147CrossRefGoogle Scholar
  35. 35.
    Shen X, Liu W, Gao X, Lu Z, Wu X, Gao X (2015) Mechanisms of oxidase and superoxide Dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J Am Chem Soc 137(50):15882–15891CrossRefGoogle Scholar
  36. 36.
    Tao Y, Ju E, Ren J, Qu X (2015) Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv Mater 27(6):1097–1104CrossRefGoogle Scholar
  37. 37.
    Teo PS, Rameshkumar P, Pandikumar A, Jiang Z-T, Altarawneh M, Huang NM (2017) Colorimetric and visual dopamine assay based on the use of gold nanorods. Microchim Acta 184(10):4125–4132CrossRefGoogle Scholar
  38. 38.
    Leng Y, Xie K, Ye L, Li G, Lu Z, He J (2015) Gold-nanoparticle-based colorimetric array for detection of dopamine in urine and serum. Talanta 139:89–95CrossRefGoogle Scholar
  39. 39.
    Chen X, Liu Q, Liu M, Zhang X, Lin S, Chen Y, Zhuang J, Yang D-P (2018) Protein-templated Fe2O3 microspheres for highly sensitive amperometric detection of dopamine. Microchim Acta 185(7):340Google Scholar
  40. 40.
    Zhao D, Yu G, Tian K, Xu C (2016) A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens Bioelectron 82:119–126CrossRefGoogle Scholar
  41. 41.
    Wang B, M-m C, H-q Z, Wen W, Zhang X-h, S-f W (2017) A simple and sensitive fluorometric dopamine assay based on silica-coated CdTe quantum dots. Microchim Acta 184(9):3189–3196CrossRefGoogle Scholar
  42. 42.
    Liu X, Zhang W, Huang L, Hu N, Liu W, Liu Y, Li S, Yang C, Suo Y, Wang J (2018) Fluorometric determination of dopamine by using molybdenum disulfide quantum dots. Microchim Acta 185(4):234CrossRefGoogle Scholar
  43. 43.
    Xue Q, Cao X, Zhang C, Xian Y (2018) Polydopamine nanodots are viable probes for fluorometric determination of the activity of alkaline phosphatase via the in situ regulation of a redox reaction triggered by the enzyme. Microchim Acta 185(4):231CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceSichuan Agricultural UniversityYa’anPeople’s Republic of China
  2. 2.Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenPeople’s Republic of China
  3. 3.Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic EngineeringEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations