Advertisement

Microchimica Acta

, 185:499 | Cite as

Enzymatic determination of uric acid using water-soluble CuInS/ZnS quantum dots as a fluorescent probe

  • Fangmei Zhang
  • Pinyi Ma
  • Xinyu Deng
  • Ying Sun
  • Xinghua Wang
  • Daqian Song
Original Paper
  • 222 Downloads

Abstract

Glutathione-capped water-soluble CuInS/ZnS quantum dots (QDs) were prepared by a microwave-assisted method. Their fluorescence, with excitation/emission peaks at 380/570 nm, is found to be quenched by hydrogen peroxide (H2O2) that is produced by the uricase catalyzed oxidation of uric acid (UA) and oxygen. The findings are used in a quenchometric method for the determination of UA. The effects of different ligands on the QDs, of pH value, buffers, enzyme ratio and reaction time were optimized. The detection limit for UA is 50 nM which is lower than other QD-based method, and the detection ranges extends from 0.25–4.0 μM. The assay is simple and sensitive, and no further modification of the QDs is required.

Graphical abstract

Keywords

Microwave-based synthesis Nanoparticle synthesis Fluorescent probe Uric acid determination Human urine and serum 

Notes

Acknowledgements

This work was supported by Special-funded Programme on national natural Science Foundation of China (Nos. 21405057 and 21207047), Science and Technology Developing Foundation of Jilin Province of China (Nos. 201701011106JC, 20160623025TC and 20160204010GX), Open Funds of the State Key Laboratory of Electroanalytical Chemistry (No. SKLEAC201704), and Graduate Innovation Fund of Jilin University (No. 2017152).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3030_MOESM1_ESM.doc (607 kb)
ESM 1 (DOC 607 kb)

References

  1. 1.
    He JJ, Fugetsu B, Tanaka S (2011) Direct detection of uric acid in body fluid samples by using boron doped graphite nano particles as the working electrode. Anal Sci 27(4):363–367CrossRefGoogle Scholar
  2. 2.
    Westley C, Xu Y, Thilaganathan B, Carnell AJ, Turner NJ, Goodacre R (2017) Absolute quantification of uric acid in human urine using surface enhanced Raman scattering with the standard addition method. Anal Chem 89(4):2472–2477CrossRefGoogle Scholar
  3. 3.
    Niskanen LK, Laaksonen DE, Nyyssonen K, Alfthan G, Lakka HM, Lakka TA, Salonen JT (2004) Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men - a prospective cohort study. Arch Intern Med 164(14):1546–1551CrossRefGoogle Scholar
  4. 4.
    So A, Thorens B (2010) Uric acid transport and disease. J Clin Invest 120(6):1791–1799CrossRefGoogle Scholar
  5. 5.
    Wu Z-Q, Chen X-T, Xu Y-Y, Tian M-J, Chen H-Y, Zhou G-P, Xu H-G (2017) High uric acid (UA) downregulates bone alkaline phosphatase (BALP) expression through inhibition of its promoter activity. Oncotarget 8(49):85670–85679PubMedPubMedCentralGoogle Scholar
  6. 6.
    Obermayr RP, Temml C, Gutjahr G, Knechtelsdorfer M, Oberbauer R, Klauser-Braun R (2008) Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol 19(12):2407–2413CrossRefGoogle Scholar
  7. 7.
    Yu M-A, Sanchez-Lozada LG, Johnson RJ, Kang D-H (2010) Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens 28(6):1234–1242PubMedGoogle Scholar
  8. 8.
    Amjadi M, Rahimpour E (2012) Silver nanoparticles plasmon resonance-based method for the determination of uric acid in human plasma and urine samples. Microchim Acta 178(3–4):373–379CrossRefGoogle Scholar
  9. 9.
    Zhang F, Wang X, Ai S, Sun Z, Wan Q, Zhu Z, Xian Y, Jin L, Yamamoto K (2004) Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal Chim Acta 519(2):155–160CrossRefGoogle Scholar
  10. 10.
    Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181(7–8):689–705CrossRefGoogle Scholar
  11. 11.
    Wang Y, Yang Y, Liu W, Ding F, Zhao Q, Zou P, Wang X, Rao H (2018) Colorimetric and fluorometric determination of uric acid based on the use of nitrogen-doped carbon quantum dots and silver triangular nanoprisms. Microchim Acta 185(6)Google Scholar
  12. 12.
    Zakel S, Rienitz O, Guettler B, Stosch R (2011) Double isotope dilution surface-enhanced Raman scattering as a reference procedure for the quantification of biomarkers in human serum. Analyst 136(19):3956–3961CrossRefGoogle Scholar
  13. 13.
    Villa JEL, Poppi RJ (2016) A portable SERS method for the determination of uric acid using a paper-based substrate and multivariate curve resolution. Analyst 141(6):1966–1972CrossRefGoogle Scholar
  14. 14.
    YunYang LW, Xu Y, Zhou T, Xia M, Hao Q (2018) Determination of trace uric acid in serum using porous graphitic carbon nitride (g-C3N4) as a fluorescent probe. Microchim Acta 185(1)Google Scholar
  15. 15.
    Liu H, Li X, Wang M, Chen X, Su X (2017) A redox-modulated fluorescent strategy for the highly sensitive detection of metabolites by using graphene quantum dots. Anal Chim Acta 990:150–156CrossRefGoogle Scholar
  16. 16.
    Yan X, Li H, Yan Y, Su X (2015) Selective detection of parathion-methyl based on near-infrared CuInS2 quantum dots. Food Chem 173:179–184CrossRefGoogle Scholar
  17. 17.
    Liu S, Shi F, Chen L, Su X (2014) Dopamine functionalized CuInS2 quantum dots as a fluorescence probe for urea. Sensors Actuators B Chem 191:246–251CrossRefGoogle Scholar
  18. 18.
    Sitbon G, Bouccara S, Tasso M, Francois A, Bezdetnaya L, Marchal F, Beaumont M, Pons T (2014) Multimodal Mn-doped I-III-VI quantum dots for near infrared fluorescence and magnetic resonance imaging: from synthesis to in vivo application. Nanoscale 6(15):9264–9272CrossRefGoogle Scholar
  19. 19.
    Hsu J-C, Huang C-C, Ou K-L, Lu N, Mai F-D, Chen J-K, Chang J-Y (2011) Silica nanohybrids integrated with CuInS2/ZnS quantum dots and magnetite nanocrystals: multifunctional agents for dual-modality imaging and drug delivery. J Mater Chem 21(48):19257–19266CrossRefGoogle Scholar
  20. 20.
    Xu G, Zeng S, Zhang B, Swihart MT, Yong KT, Prasad PN (2016) New generation cadmium-free quantum dots for biophotonics and Nanomedicine. Chem Rev 116(19):12234–12327CrossRefGoogle Scholar
  21. 21.
    Chen Y, Li S, Huang L, Pan D (2014) Low-cost and gram-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots in an electric pressure cooker. Nanoscale 6(3):1295–1298CrossRefGoogle Scholar
  22. 22.
    Komarala VK, Xie C, Wang YQ, Xu J, Xiao M (2012) Time-resolved photoluminescence properties of CuInS2/ZnS nanocrystals: influence of intrinsic defects and external impurities. J Appl Phys 111(12):124314CrossRefGoogle Scholar
  23. 23.
    Xie R, Rutherford M, Peng X (2009) Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J Am Chem Soc 131(15):5691–5697CrossRefGoogle Scholar
  24. 24.
    Guo W, Yang W, Wang Y, Sun X, Liu Z, Zhang B, Chang J, Chen X (2014) Color-tunable Gd-Zn-Cu-In-S/ZnS quantum dots for dual modality magnetic resonance and fluorescence imaging. Nano Res 7(11):1581–1591CrossRefGoogle Scholar
  25. 25.
    Raj MA, John SA (2013) Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. Anal Chim Acta 771:14–20CrossRefGoogle Scholar
  26. 26.
    Govindasamy M, Mani V, Chen S-M, Sathiyan A, Merlin JP, Ponnusamy VK (2016) Sensitive and selective determination of uric acid using polyaniline and iron composite film modified electrode. Int J Electrochem Sci 11(10):8730–8737CrossRefGoogle Scholar
  27. 27.
    Azmi NE, Ramli NI, Abdullah J, Hamid MAA, Sidek H, Abd Rahman S, Ariffin N, Yusof NA (2015) A simple and sensitive fluorescence based biosensor for the determination of uric acid using H2O2-sensitive quantum dots/dual enzymes. Biosens Bioelectron 67:129–133CrossRefGoogle Scholar
  28. 28.
    Schrenkhammer P, Wolfbeis OS (2008) Fully reversible optical biosensors for uric acid using oxygen transduction. Biosens Bioelectron 24(4):994–999CrossRefGoogle Scholar
  29. 29.
    Kanyong P, Pemberton RM, Jackson SK, Hart JP (2012) Development of a sandwich format, amperometric screen-printed uric acid biosensor for urine analysis. Anal Biochem 428(1):39–43CrossRefGoogle Scholar
  30. 30.
    Kong R-M, Yang A, Wang Q, Wang Y, Ma L, Qu F (2018) Uricase based fluorometric determination of uric acid based on the use of graphene quantum dot@silver core-shell nanocomposites. Microchim Acta 185(1)Google Scholar
  31. 31.
    Cai N, Tan L, Li Y, Xia T, Hu T, Su X (2017) Biosensing platform for the detection of uric acid based on graphene quantum dots and G-quadruplex/hemin DNAzyme. Anal Chim Acta 965:96–102CrossRefGoogle Scholar
  32. 32.
    Yang D, Luo M, Di J, Tu Y, Yan J (2018) Gold nanocluster-based ratiometric fluorescent probes for hydrogen peroxide and enzymatic sensing of uric acid. Microchim Acta 185(6):305CrossRefGoogle Scholar
  33. 33.
    Wang HY, Lu QJ, Hou YX, Liu YL, Zhang YY (2016) High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid. Talanta 155:62–69CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ChemistryJilin UniversityChangchunPeople’s Republic of China
  2. 2.Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery SciencesHarbinPeople’s Republic of China

Personalised recommendations