Microchimica Acta

, 185:495 | Cite as

HKUST-1 metal-organic framework for dispersive solid phase extraction of 2-methyl-4-chlorophenoxyacetic acid (MCPA) prior to its determination by ion mobility spectrometry

  • Masoumeh MohammadnejadEmail author
  • Zahra Gudarzi
  • Shokoofeh Geranmayeh
  • Vahideh Mahdavi
Original Paper


The authors describe a method for the extraction of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) from agricultural products. The metal organic framework (MOF) HKUST-1 (a copper(II) benzene-1,3,5-tricarboxylate) was used as a sorbent for efficient clean-up and preconcentration of MCPA. The effects of pH value, stirring time, amount of sorbent on extraction were optimized by central composite design. Ultrasonic waves were used for desorption procedure and its advantage was demonstrated for an increase in extraction recovery. Corona discharge ion mobility spectrometry (IMS) was then applied for fast and sensitive determination of MCPA. The method was validated in terms of sensitivity, recovery and reproducibility. Under the optimum conditions the calibration plot is linear between 0.035–0.200 μg. L−1. The detection limit is 10 ng L−1, with relative standard deviations of <5%. Real samples (water, soil and agricultural product) were spiked and then analyzed by this method, and the results revealed efficient solid phase extraction and recovery.

Graphical abstract

Schematic presentation of a procedure for extraction of an organochlorine pesticide (2-methyl-4-chlorophenoxyacetic acid) from agriculture products using the HKUST-1 metal-organic framework prior to determination by ion mobility spectrometry based on its ionization in drift cell.


2-Methyl-4-chlorophenoxyacetic acid MCPA Ion mobility spectrometry Metal organic framework MOF Dispersive solid phase extraction Central composite design Porous material Water analysis Agriculture products 



The authors acknowledge the Research Council of Alzahra University.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3014_MOESM1_ESM.doc (692 kb)
ESM 1 (DOC 691 kb)


  1. 1.
    Ikeura H, Kobayashi F, Tamaki M (2011) Removal of residual pesticides in vegetables using ozone microbubbles. J Hazard Mater 186:956–959. CrossRefPubMedGoogle Scholar
  2. 2.
    Hu J, Yang T, Yin S, Cao D (2012) Dissipation and residue of MCPA (4-chloro-2-ethylphenoxyacetate) in wheat and soil. Environ Monit Assess 184:5017–5024. CrossRefPubMedGoogle Scholar
  3. 3.
    Torres-Cartas S, Gómez-Benito C, Meseguer-Lloret S (2012) FI on-line chemiluminescence reaction for determination of MCPA in water samples. Anal Bioanal Chem 402:1289–1296. CrossRefPubMedGoogle Scholar
  4. 4.
    Steinborn A, Alder L, Spitzke M, Dörk D, Anastassiades M (2017) Development of a QuEChERS-based method for the simultaneous determination of acidic pesticides, their esters, and conjugates following alkaline hydrolysis. J Agric Food Chem 65:1296–1305. CrossRefPubMedGoogle Scholar
  5. 5.
    Chen X, Dong B, Zhong M, Hu J (2015) Dissipation kinetics and residues of amidosulfuron and MCPA in wheat ecosystems based on a modified QuEChERS and low-temperature cleanup method using the RRLC-QqQ-MS/MS technique. Anal Methods 7:10299–10305. CrossRefGoogle Scholar
  6. 6.
    Creaser CS, Griffiths JR, Bramwell CJ, Noreen S, Hill CA, Thomas CLP (2004) Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement. Analyst 129:984. CrossRefGoogle Scholar
  7. 7.
    Saraji M, Jafari MT, Mossaddegh M (2016) Halloysite nanotubes-titanium dioxide as a solid-phase microextraction coating combined with negative corona discharge-ion mobility spectrometry for the determination of parathion. Anal Chim Acta 926:55–62. CrossRefPubMedGoogle Scholar
  8. 8.
    Peñuela-Pinto O, Armenta S, Esteve-Turrillas FA, de la Guardia M (2017) Selective determination of clenbuterol residues in urine by molecular imprinted polymer—ion mobility spectrometry. Microchem J 134:62–67. CrossRefGoogle Scholar
  9. 9.
    Sheibani A, Tabrizchi M, Ghaziaskar HS (2008) Determination of aflatoxins B1 and B2 using ion mobility spectrometry. Talanta 75:233–238. CrossRefPubMedGoogle Scholar
  10. 10.
    Khalesi M, Sheikh-Zeinoddin M, Tabrizchi M (2011) Determination of ochratoxin a in licorice root using inverse ion mobility spectrometry. Talanta 83:988–993. CrossRefPubMedGoogle Scholar
  11. 11.
    Mohammadnejad M, Farhadpour M, Mahdavi V, Tabrizchi M (2017) Rapid monitoring and sensitive determination of DDT and its metabolites in water sample using solid-phase extraction followed by ion mobility spectrometry. Int J Ion Mobil Spectrom 20:23–30. CrossRefGoogle Scholar
  12. 12.
    Armenta S, de la Guardia M, Abad-Fuentes A, Abad-Somovilla A, Esteve-Turrillas FA (2015) Off-line coupling of multidimensional immunoaffinity chromatography and ion mobility spectrometry: a promising partnership. J Chromatogr A 1426:110–117. CrossRefPubMedGoogle Scholar
  13. 13.
    Jafari MT, Badihi Z, Jazan E (2012) A new approach to determine salicylic acid in human urine and blood plasma based on negative electrospray ion mobility spectrometry after selective separation using a molecular imprinted polymer. Talanta 99:520–526. CrossRefPubMedGoogle Scholar
  14. 14.
    Jafari MT, Kamfirozi M, Jazan E, Ghoreishi SM (2014) Selective extraction and analysis of pioglitazone in cow plasma using a molecularly imprinted polymer combined with ESI ion mobility spectrometry. J Sep Sci 37:573–579. CrossRefPubMedGoogle Scholar
  15. 15.
    Al Housari F, Höhener P, Chiron S (2011) Factors responsible for rapid dissipation of acidic herbicides in the coastal lagoons of the Camargue (Rhône River Delta, France). Sci Total Environ 409:582–587. CrossRefPubMedGoogle Scholar
  16. 16.
    Moret S, Sánchez JM, Salvadó V, Hidalgo M (2005) The evaluation of different sorbents for the preconcentration of phenoxyacetic acid herbicides and their metabolites from soils. J Chromatogr A 1099:55–63. CrossRefPubMedGoogle Scholar
  17. 17.
    Tran ATK, Hyne RV, Doble P (2007) Determination of commonly used polar herbicides in agricultural drainage waters in Australia by HPLC. Chemosphere 67:944–953. CrossRefPubMedGoogle Scholar
  18. 18.
    Comoretto L, Arfib B, Chiron S (2007) Pesticides in the Rh?? Ne river delta (France): basic data for a field-based exposure assessment. Sci Total Environ 380:124–132. CrossRefPubMedGoogle Scholar
  19. 19.
    Gervais G, Brosillon S, Laplanche A, Helen C (2008) Ultra-pressure liquid chromatography-electrospray tandem mass spectrometry for multiresidue determination of pesticides in water. J Chromatogr A 1202:163–172. CrossRefPubMedGoogle Scholar
  20. 20.
    Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID (1999) A chemically Functionalizable Nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150. CrossRefPubMedGoogle Scholar
  21. 21.
    Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen SBT, Yazaydın AÖ, Hupp JT (2012) Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134:15016–15021. CrossRefPubMedGoogle Scholar
  22. 22.
    Schlesinger M, Schulze S, Hietschold M, Mehring M (2010) Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Microporous Mesoporous Mater 132:121–127. CrossRefGoogle Scholar
  23. 23.
    Lee YR, Kim J, Ahn WS (2013) Synthesis of metal-organic frameworks: a mini review. Korean J Chem Eng 30:1667–1680. CrossRefGoogle Scholar
  24. 24.
    Ghorbani-Kalhor E (2016) A metal-organic framework nanocomposite made from functionalized magnetite nanoparticles and HKUST-1 (MOF-199) for preconcentration of Cd(II), Pb(II), and Ni(II). Microchim Acta 183:2639–2647. CrossRefGoogle Scholar
  25. 25.
    Deng Y, Zhang R, Li D, Sun P, Su P, Yang Y (2018) Preparation of iron-based MIL-101 functionalized polydopamine@Fe3O4 magnetic composites for extracting sulfonylurea herbicides from environmental water and vegetable samples. J Sep Sci 41:2046–2055. CrossRefPubMedGoogle Scholar
  26. 26.
    Tadjarodi A, Abbaszadeh A (2016) A magnetic nanocomposite prepared from chelator-modified magnetite (Fe3O4) and HKUST-1 (MOF-199) for separation and preconcentration of mercury(II). Microchim Acta 183:1391–1399. CrossRefGoogle Scholar
  27. 27.
    Tabrizchi M, Khayamian T, Taj N (2000) Design and optimization of a corona discharge ionization source for ion mobility spectrometry. Rev Sci Instrum 71:2321–2328. CrossRefGoogle Scholar
  28. 28.
    Saraji M, Rezaei B, Boroujeni MK, Bidgoli AAH (2013) Polypyrrole/sol-gel composite as a solid-phase microextraction fiber coating for the determination of organophosphorus pesticides in water and vegetable samples. J Chromatogr A 1279:20–26. CrossRefPubMedGoogle Scholar
  29. 29.
    Tabrizchi M (2001) Temperature corrections for ion mobility spectrometry. Appl Spectrosc 55:1653–1659CrossRefGoogle Scholar
  30. 30.
    Panella B, Hirscher M, Pütter H, Müller U (2006) Hydrogen adsorption in metal-organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv Funct Mater 16:520–524. CrossRefGoogle Scholar
  31. 31.
    Borfecchia E, Maurelli S, Gianolio D, Groppo E, Chiesa M, Bonino F, Lamberti C (2012) Insights into adsorption of NH3 on HKUST-1 metal − organic framework : a multitechnique approach. J Phys Chem C 116:19839–19850. CrossRefGoogle Scholar
  32. 32.
    Lin KS, Adhikari AK, Su YH, Shu CW, Chan HY (2012) Synthesis, characterization, and hydrogen storage study by hydrogen spillover of MIL-101 metal organic frameworks. Adsorption 18:483–491. CrossRefGoogle Scholar
  33. 33.
    Tennakoon DASS, Perera KAPB, Hathurusinghe LS (2014) An unusual case of non-fatal poisoning due to herbicide 4-chloro-2-methyl phenoxyacetic acid (MCPA). Forensic Sci Int 243:90–94. CrossRefPubMedGoogle Scholar
  34. 34.
    Rahemi V, Garrido JMPJ, Borges F, Brett CMA, Garrido EMPJ (2015) Electrochemical sensor for simultaneous determination of herbicide MCPA and its metabolite 4-chloro-2-methylphenol. Application to photodegradation environmental monitoring. Environ Sci Pollut Res 22:4491–4499. CrossRefGoogle Scholar
  35. 35.
    Hogenboom AC, Hofman MP, Jolly DA, Niessen WMA, Brinkman UAT (2000) On-line dual-precolumn-based trace enrichment for the determination of polar and acidic microcontaminants in river water by liquid chromatography with diode-array UV and tandem mass spectrometric detection. J Chromatogr A 885:377–388. CrossRefPubMedGoogle Scholar
  36. 36.
    Gao N, Cai K, Guo X, Zhang Y, Yang S, Hu D (2014) Analysis of MCPA and TCP in water by liquid chromatography-ion trap-electrospray tandem mass spectrometry. Int J Environ Anal Chem 94:594–605. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Masoumeh Mohammadnejad
    • 1
    Email author
  • Zahra Gudarzi
    • 1
  • Shokoofeh Geranmayeh
    • 1
  • Vahideh Mahdavi
    • 2
  1. 1.Department of ChemistryAlzahra UniversityTehranIran
  2. 2.Pesticide Research DepartmentIranian Research Institute of Plant ProtectionTehranIran

Personalised recommendations