Advertisement

Microchimica Acta

, 185:459 | Cite as

A glassy carbon electrode modified with nitrogen-doped reduced graphene oxide and melamine for ultra-sensitive voltammetric determination of bisphenol A

  • Jingyu Qin
  • Jing Shen
  • Xiangyang Xu
  • Yuan Yuan
  • Guangyu He
  • Haiqun Chen
Original Paper
  • 193 Downloads

Abstract

A composite was prepared at room temperature from nitrogen-doped reduced graphene oxide (N-rGO) and melamine via π-interaction. An ultra-sensitive electrochemical sensor for the determination of trace levels of bisphenol A (BPA) was obtained by coating a glassy carbon electrode (GCE) with the composite. The structure and morphology of composite were characterized by FTIR, Raman, XRD, XPS, SEM and TEM. Because of the synergetic effects of N-rGO and melamine, the modified GCE displays considerably enhanced sensitivity to BPA. The voltammetric response, typically measured at a peak of 0.48 V (vs. SCE) is linear in the 0.05 to 20 μM BPA concentration range, and the detection limit is 0.8 nM (at S/N = 3). The sensor is reproducible, stable and selective. It was applied to analyze baby bottles, drinking cups, mineral water bottles and shopping receipts that were spiked with BPA, and the recoveries reached 99.1–101.4%.

Graphical abstract

Illustration of fabricating the electrochemical sensor for detecting BPA. N-G/M: nitrogen-doped reduced graphene oxide and melamine composite; GCE: glassy carbon electrode

Keywords

Carbon-based nanomaterials π-Interaction Supramolecular system Sensor Voltammetry Differential pulse voltammetry Real sample analysis Endocrine disruptor Trace BPA Electrochemical detection 

Notes

Acknowledgments

The authors are grateful to the financial support of the National Nature Science Foundation of China (Nos. 51572036, 51472035), the Science and Technology Department of Jiangsu Province (BY2015027-18, BY2016029-12), Changzhou key laboratory of graphene-based materials for environment & safety (CE20160001-2, CM20153006) and the PAPD of Jiangsu Higher Education Institution.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2998_MOESM1_ESM.docx (370 kb)
ESM 1 (DOCX 369 kb)

References

  1. 1.
    Fan J, Guo H, Liu G, Peng P (2007) Simple and sensitive fluorimetric method for determination of environmental hormone bisphenol a based on its inhibitory effect on the redox reaction between hydroxy radical and rhodamine 6G. Anal Chim Acta 585:134–138CrossRefGoogle Scholar
  2. 2.
    Kuklenyik Z, Ekong J, Cutchins CD, Needham LL, Calafat AM (2003) Simultaneous measurement of urinary bisphenol a and alkylphenols by automated solid-phase extractive derivatization gas chromatography/mass spectrometry. Anal Chem 75:6820–6825CrossRefGoogle Scholar
  3. 3.
    Sambe H, Hoshina K, Hosoya K, Haginaka J (2005) Direct injection analysis of bisphenol a in serum by combination of isotope imprinting with liquid chromatography-mass spectrometry. Analyst 130:38–40CrossRefGoogle Scholar
  4. 4.
    Alkasir RS, Ganesana M, Won YH, Stanciu L, Andreescu S (2010) Enzyme functionalized nanoparticles for electrochemical biosensors: a comparative study with applications for the detection of bisphenol a. Biosens Bioelectron 26:43–49CrossRefGoogle Scholar
  5. 5.
    Ragavan KV, Rastogi NK, Thakur MS (2013) Sensors and biosensors for analysis of bisphenol-a. TrAC Trends Anal Chem 52:248–260CrossRefGoogle Scholar
  6. 6.
    Yin H, Zhou Y, Ai S, Han R, Tang T, Zhu L (2010) Electrochemical behavior of bisphenol a at glassy carbon electrode modified with gold nanoparticles, silk fibroin, and PAMAM dendrimers. Microchim Acta 170:99–105CrossRefGoogle Scholar
  7. 7.
    Gao Y, Cao Y, Yang D, Luo X, Tang Y, Li H (2012) Sensitivity and selectivity determination of bisphenol a using SWCNT-CD conjugate modified glassy carbon electrode. J Hazard Mater 199-200:111–118CrossRefGoogle Scholar
  8. 8.
    Baghayeri M, Sedrpoushan A, Mohammadi A, Heidari M (2017) A non-enzymatic glucose sensor based on NiO nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode. Ionics 23:1553–1562CrossRefGoogle Scholar
  9. 9.
    Baghayeri M, Veisi H (2015) Fabrication of a facile electrochemical biosensor for hydrogen peroxide using efficient catalysis of hemoglobin on the porous Pd@Fe3O4-MWCNT nanocomposite. Biosens Bioelectron 74:190–198CrossRefGoogle Scholar
  10. 10.
    Baghayeri M, Ansari R, Nodehi M, Razavipanah I, Veisi H (2018) Label-free electrochemical bisphenol a aptasensor based on designing and fabrication of a magnetic gold nanocomposite. Electroanal 30:2160–2166CrossRefGoogle Scholar
  11. 11.
    Baghayeri M (2017) Pt nanoparticles/reduced graphene oxide nanosheets as a sensing platform: application to determination of droxidopa in presence of phenobarbital. Sensor Actuat B-Chem 240:255–263CrossRefGoogle Scholar
  12. 12.
    Jiao S, Jin J, Wang L (2014) Tannic acid functionalized N-doped graphene modified glassy carbon electrode for the determination of bisphenol a in food package. Talanta 122:140–144CrossRefGoogle Scholar
  13. 13.
    Shen R, Zhang W, Yuan Y, He G, Chen H (2015) Electrochemical detection of bisphenol a at graphene/melamine nanoparticle-modified glassy carbon electrode. J Appl Electrochem 45:343–352CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Cheng Y, Zhou Y, Li B, Gu W, Shi X, Xian Y (2013) Electrochemical sensor for bisphenol a based on magnetic nanoparticles decorated reduced graphene oxide. Talanta 107:211–218CrossRefGoogle Scholar
  15. 15.
    Liu C, Zhang AY, Si Y, Pei DN, Yu HQ (2017) Photochemical anti-fouling approach for electrochemical pollutant degradation on facet-tailored TiO2 single crystals. Environ Sci Technol 51:11326–11335CrossRefGoogle Scholar
  16. 16.
    Singh N, Reza KK, Ali MA, Agrawal VV, Biradar AM (2015) Self assembled DC sputtered nanostructured rutile TiO2 platform for bisphenol a detection. Biosens Bioelectron 68:633–641CrossRefGoogle Scholar
  17. 17.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRefGoogle Scholar
  18. 18.
    Sathish M, Mitani S, Tomai T, Honma I (2014) Supercritical fluid assisted synthesis of N-doped graphene nanosheets and their capacitance behavior in ionic liquid and aqueous electrolytes. J Mater Chem A 2:4731–4738CrossRefGoogle Scholar
  19. 19.
    Kuramitz H, Nakata Y, Kawasaki M, Tanaka S (2001) Electrochemical oxidation of bisphenol a. application to the removal of bisphenol a using a carbon fiber electrode. Chemosphere 45:37–43CrossRefGoogle Scholar
  20. 20.
    Kurbanoglu S, Ozkan SA (2018) Electrochemical carbon based nanosensors: a promising tool in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 147:439–457CrossRefGoogle Scholar
  21. 21.
    Chen J, Li Y, Lv K, Zhong W, Wang H, Wu Z, Yi P, Jiang J (2016) Cyclam-functionalized carbon dots sensor for sensitive and selective detection of copper(II) ion and sulfide anion in aqueous media and its imaging in live cells. Sensor Actuat B-Chem 224:298–306CrossRefGoogle Scholar
  22. 22.
    Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20:3557–3561CrossRefGoogle Scholar
  23. 23.
    Fan H, Li Y, Wu D, Ma H, Mao K, Fan D, Du B, Li H, Wei Q (2012) Electrochemical bisphenol a sensor based on N-doped graphene sheets. Anal Chim Acta 711:24–28CrossRefGoogle Scholar
  24. 24.
    Wang B, Qin Y, Tan W, Tao Y, Kong Y (2017) Smartly designed 3D N-doped mesoporous graphene for high-performance supercapacitor electrodes. Electrochim Acta 241:1–9CrossRefGoogle Scholar
  25. 25.
    Panchakarla LS, Govindaraj A, Rao CN (2007) Nitrogen-and boron-doped double-walled carbon nanotubes. ACS Nano 1:494–500CrossRefGoogle Scholar
  26. 26.
    Naderi HR, Sobhaninasab A, Rahiminasrabadi M, Ganjali MR (2017) Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Appl Surf Sci 423:1025–1034CrossRefGoogle Scholar
  27. 27.
    Ahmed J, Rahman MM, Siddiquey IA, Asiri AM, Hasnat MA (2017) Efficient bisphenol-a detection based on the ternary metal oxide (TMO) composite by electrochemical approaches. Electrochim Acta 246:597–605CrossRefGoogle Scholar
  28. 28.
    Yin HS, Zhou YL, Ai SY (2009) Preparation and characteristic of cobalt phthalocyanine modified carbon paste electrode for bisphenol a detection. J Electroanal Chem 626:80–88CrossRefGoogle Scholar
  29. 29.
    Jin GP, Yu B, Yang SZ, Ma HH (2011) Extremely sensitive electrode for melamine using a kind of molecularly imprinted nano-porous film. Microchim Acta 174:265–271CrossRefGoogle Scholar
  30. 30.
    Anson FC (1964) Application of potentiostatic current integration to the study of the adsorption of cobalt(III)-(ethylenedinitrilo(tetraacetate) on mercury electrodes. Anal Chem 36: 932–934CrossRefGoogle Scholar
  31. 31.
    Velasco JG (1997) Determination of standard rate constants for electrochemical irreversible processes from linear sweep voltammograms. Electroanal 9:880–882CrossRefGoogle Scholar
  32. 32.
    Fan H, Li Y, Wu D, Ma H, Mao K, Fan D, Du B, Li H, Wei Q (2012) Electrochemical bisphenol a sensor based on N-doped graphene sheets. Anal Chim Acta 711:24–28CrossRefGoogle Scholar
  33. 33.
    Peng J, Feng Y, Han XX, Gao ZN (2016) Simultaneous determination of bisphenol a and hydroquinone using a poly(melamine) coated graphene doped carbon paste electrode. Microchim Acta 183:2289–2296CrossRefGoogle Scholar
  34. 34.
    Zhan T, Song Y, Tan Z, Hou W (2017) Electrochemical bisphenol a sensor based on exfoliated Ni2Al-layered double hydroxide nanosheets modified electrode. Sensor Actuat B-Chem 238:962–971CrossRefGoogle Scholar
  35. 35.
    Chen WY, Mei LP, Feng JJ, Yuan T, Wang AJ, Yu H (2015) Electrochemical determination of bisphenol a with a glassy carbon electrode modified with gold nanodendrites. Microchim Acta 182:703–709CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou UniversityJiangsu ProvinceChina

Personalised recommendations