Microchimica Acta

, 185:408 | Cite as

An organic electrochemical transistor for determination of microRNA21 using gold nanoparticles and a capture DNA probe

  • Jing Peng
  • Tao He
  • Yulian Sun
  • Yawen Liu
  • Qianqian Cao
  • Qiong Wang
  • Hao TangEmail author
Original Paper


A method is described for the determination of microRNA. It is based on the use of organic electrochemical transistors (OECTs) fabricated on a flexible poly(ethylene terephthalate) substrate. A gold electrode was modified with gold nanoparticles to immobilize the capture DNA probe and then served as the gate of the device. The detection of microRNA21 was realized by monitoring the change of the drain-source current after hybridization of capture DNA with microRNA21. Under optimal conditions, this biosensor exhibits good sensitivity and specificity. It works in the 5 pM to 20 nM microRNA concentration range and has a 2 pM detection limit.

Graphical abstract

Schematic of the organic electrochemical transistor-based microRNA21 biosensor. It constitutes a screen-printed carbon source (S) and drain (D) electrodes, a spin-coated poly(3,4-ethylenedioxythiophere):poly(styrene sulfonic acid) (PEDOT:PSS) film on the poly(ethylene terephthalate) (PET) substrate, and a gold gate modified with gold nanoparticles (Au NPs), capture probe, and 6-mercapto-1-hexanol (MCH).


Organic bioelectronics Screen-printing Flexible device Nanomaterial surface modification Self-assembling Electrochemical biosensor HeLa cells 



This work was supported by the National Natural Science Foundation of China under grants (21275050 and 21145001), the Hunan Provincial Natural Science Foundation of China (13JJ1016), the Scientific Research Fund of Hunan Provincial Education Department (13A053), the Construct Program of the Key Discipline in Hunan Province, and Foundation of the Science & Technology Department of Hunan Province (2016SK2020).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2944_MOESM1_ESM.docx (4 mb)
ESM 1 (DOCX 4064 kb)


  1. 1.
    De Pontual L, Yao E, Callier P, Faivre L, Drouin V, Cariou S, Van Haeringen A, Genevieve D, Goldenberg A, Oufadem M, Manouvrier S, Munnich A, Vidigal JA, Vekemans M, Lyonnet S, Henrion-Caude A, Ventura A, Amiel J (2011) Germline deletion of the miR-17~92 cluster causes skeletal and growth defects in humans. Nat Genet 43:1026–1030CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tu Y, Li W, Wu P, Zhang H, Cai C (2013) Fluorescence quenching of graphene oxide integrating with the site-specific cleavage of the endonuclease for sensitive and selective microRNA detection. Anal Chem 85:2536–2542CrossRefPubMedGoogle Scholar
  4. 4.
    Bi S, Zhang J, Hao S, Ding C, Zhang S (2011) Exponential amplification for chemiluminescence resonance energy transfer detection of microRNA in real samples based on a cross-catalyst strand-displacement network. Anal Chem 83:3696–3702CrossRefPubMedGoogle Scholar
  5. 5.
    Sípová H, Zhang S, Dudley AM, Galas D, Wang K, Homola J (2010) Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Anal Chem 82:10110–10115CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chiadò A, Novara C, Lamberti A, Geobaldo F, Giorgis F, Rivolo P (2016) Immobilization of oligonucleotides on metal-dielectric nanostructures for miRNA detection. Anal Chem 88:9554–9563CrossRefPubMedGoogle Scholar
  7. 7.
    Wu X, Chai Y, Zhang P, Yuan R (2016) An electrochemical biosensor for sensitive setection of microRNA-155: combining target recycling with cascade catalysis for signal amplification. ACS Appl Mater Interfaces 7:713–720CrossRefGoogle Scholar
  8. 8.
    Miao X, Wang W, Kang T, Liu J, Shiu KK, Leung CH, Ma DL (2016) Ultrasensitive electrochemical detection of miRNA-21 by using an iridium(III) complex as catalyst. Biosens Bioelectron 86:454–458CrossRefPubMedGoogle Scholar
  9. 9.
    Strakosas X, Bongo M, Owens RM (2015) The organic electrochemical transistor for biological applications. J Appl Polym Sci 132:41735CrossRefGoogle Scholar
  10. 10.
    Rivnay J, Owens RM, Malliaras GG (2014) The rise of organic bioelectronics. Chem Mater 26:679–685CrossRefGoogle Scholar
  11. 11.
    Ji X, Lau HY, Ren X, Peng B, Zhai P, Feng SP, Chan PKL (2016) Highly sensitive metabolite biosensor based on organic electrochemical transistor integrated with microfluidic channel and poly(N-vinyl-2-pyrrolidone)-capped platinum nanoparticles. Adv Mater Technol 1:1600042CrossRefGoogle Scholar
  12. 12.
    Liao C, Zhang M, Niu L, Zheng Z, Yan F (2013) Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes. J Mater Chem 1:191–200Google Scholar
  13. 13.
    Scheiblin G, Aliane A, Strakosas X, Curto VF, Coppard R, Marchand G, Owens RM, Mailley P, Malliaras GG (2015) Screen-printed organic electrochemical transistors for metabolite sensing. MRS Commun 5:507–511CrossRefGoogle Scholar
  14. 14.
    Tang H, Lin P, Chan HL, Yan F (2011) Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosens Bioelectron 26:4559–4563CrossRefPubMedGoogle Scholar
  15. 15.
    Pappa A-M, Inal S, Roy K, Zhang Y, Pitsalidis C, Hama A, Pas J, Malliaras GG, Owens RM (2017) Polyelectrolyte layer-by-layer assembly on organic electrochemical transistors. ACS Appl Mater Interfaces 9:10427–10434CrossRefPubMedGoogle Scholar
  16. 16.
    Kim DJ, Lee NE, Park JS, Park IJ, Kim JG, Cho HJ (2010) Organic electrochemical transistor based immunosensor for prostate specific antigen (PSA) detection using gold nanoparticles for signal amplification. Biosens Bioelectron 25:2477–2482CrossRefPubMedGoogle Scholar
  17. 17.
    Yao C, Li Q, Guo J, Yan F, Hsing IM (2015) Rigid and flexible organic electrochemical transistor arrays for monitoring action potentials from electrogenic cells. Adv Healthcare Mater 4:528–533CrossRefGoogle Scholar
  18. 18.
    Khodagholy D, Doublet T, Quilichini P, Gurfinkel M, Leleux P, Ghestem A, Ismailova E, Hervé T, Sanaur S, Bernard C (2013) In vivo recordings of brain activity using organic transistors. Nat Commun 4:1575CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gualandi I, Marzocchi M, Scavetta E, Calienni M, Bonfiglio A, Fraboni B (2015) A simple all-PEDOT:PSS electrochemical transistor for ascorbic acid sensing. J Mater Chem B 3:6753–6762CrossRefGoogle Scholar
  20. 20.
    Marquette CA, Lawrence MF, Blum LJ (2006) DNA covalent immobilization onto screen-printed electrode networks for direct label-free hybridization detection of p53 sequences. Anal Chem 78:959–964CrossRefPubMedGoogle Scholar
  21. 21.
    Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Thum T, Gross C, Fielder J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JTR, Bauersachs J, Engelhardt S (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:980–984CrossRefPubMedGoogle Scholar
  23. 23.
    Guo X, Liu J, Liu F, She F, Zheng Q, Tang H, Ma M, Yao S (2017) Label-free and sensitive sialic acid biosensor based on organic electrochemical transistors. Sensors Actuators B Chem 240:1075–1082CrossRefGoogle Scholar
  24. 24.
    Shuai HL, Huang KJ, Chen YX, Fang LX, Jia MP (2017) Au nanoparticles/hollow molybdenum disulfide microcubes based biosensor for microRNA-21 detection coupled with duplex-specific nuclease and enzyme signal amplification. Biosens Bioelectron 89:989–997CrossRefPubMedGoogle Scholar
  25. 25.
    Bernards DA, Macaya DJ, Nikolou M, DeFranco JA, Takamatsu S, Malliaras GG (2008) Enzymatic sensing with organic electrochemical transistors. J Mater Chem 18:116–120CrossRefGoogle Scholar
  26. 26.
    Miao X, Ning X, Li Z, Cheng Z (2016) Sensitive detection of miRNA by using hybridization chain reaction coupled with positively charged gold nanoparticles. Sci Rep 6:32358CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kaplan M, Kilic T, Guler G, Mandli J, Amine A, Ozsoz M (2016) A novel method for sensitive microRNA detection: Electropolymerization based doping. Biosens Bioelectron 92:770–778CrossRefPubMedGoogle Scholar
  28. 28.
    Kilic T, Topkaya SN, Ozkan Ariksoysal D, Ozsoz M, Ballar P, Erac Y, Gozen O (2012) Electrochemical based detection of microRNA, miR21 in breast cancer cells. Biosens Bioelectron 38:195–201CrossRefPubMedGoogle Scholar
  29. 29.
    Gao X, Xu H, Baloda M, Gurung AS, Xu L-P, Wang T, Zhang X, Liu G (2014) Visual detection of microRNA with lateral flow nucleic acid biosensor. Biosens Bioelectron 54:578–584CrossRefPubMedGoogle Scholar
  30. 30.
    Wu X, Chai Y, Yuan R, Su H, Han J (2013) A novel label-free electrochemical microRNA biosensor using Pd nanoparticles as enhancer and linker. Analyst 138:1060–1066CrossRefPubMedGoogle Scholar
  31. 31.
    Li F, Peng J, Wang J, Tang H, Tan L, Xie Q, Yao S (2014) Carbon nanotube-based label-free electrochemical biosensor for sensitive detection of miRNA-24. Biosens Bioelectron 54:158–164CrossRefPubMedGoogle Scholar
  32. 32.
    Feng K, Liu J, Deng L, Yu H, Yang M (2018) Amperometric detection of microRNA based on DNA-controlled current of a molybdophosphate redox probe and amplification via hybridization chain reaction. Microchim Acta 185:28–35CrossRefGoogle Scholar
  33. 33.
    Liu H, Bei X, Xia Q, Fu Y, Zhang S, Liu M, Yang Y (2016) Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy. Microchim Acta 183:297–304CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical EngineeringHunan Normal UniversityChangshaPeople’s Republic of China
  2. 2.College of ScienceCentral South University of Forestry and TechnologyChangshaPeople’s Republic of China

Personalised recommendations