Microchimica Acta

, 185:410 | Cite as

Determination of bacterial DNA based on catalytic oxidation of cysteine by G-quadruplex DNAzyme generated from asymmetric PCR: Application to the colorimetric detection of Staphylococcus aureus

  • Jing Wang
  • Haigang Li
  • Tingting Li
  • Liansheng LingEmail author
Original Paper


A one-step, one-tube colorimetric assay is described for the detection of bacterial double-stranded DNA (dsDNA). It utilizes a G-quadruplex DNAzyme produced by an asymmetric polymerase chain reaction (As-PCR) that catalyzes the oxidation of cysteine to form cystine. This results in the formation of oligonucleotide-modified gold nanoparticles via triplex formation, and eventually in a color change from red to blue that occurs within about 10 mins. This can be measured by ratiometric colorimetric (at 525 and 600 nm). The limit of detection (LOD) for the model analyte (dsDNA of Staphylococcus aureus (S. aureus)) is as low as 0.28 pg per 0.05 mL with a good linear response ranging from 16.0 fg·μL−1 to 1.6 ng·μL−1. This is much lower than previously reported LODs. The assay is highly selective for S. aureus dsDNA over a range of other bacterial DNAs. Conceivably, it provides an attractive alternative tool for rapid detection of bacterial dsDNA as required in pathogen screening in the food industry.

Graphical abstract

Schematic presentation of a colorimetric assay for bacterial DNA. It is based on the catalytic activity of a G-quadruplex DNAzyme that is formed by an asymmetric PCR involving triplex DNA formation and gold nanoparticle (AuNPs) aggregation.


Staphylococcus aureus Colorimetric detection Asymmetric PCR DNA-modified AuNPs G-quadruplex DNAzyme Triplex DNA Bacterial dsDNA Catalytic property C•G◦C triad 



This work was supported by the National Natural Science Foundation of China (Grant No. 21375153). The bacteria used in this work were afforded by Guangdong Open Laboratory of Applied Microbiology from Guangdong Institute of Microbiology (Guangdong, China).

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2018_2935_MOESM1_ESM.docx (1010 kb)
ESM 1 (DOCX 1009 kb)


  1. 1.
    Zhao Y, Chen F, Li Q, Wang L, Fan C (2015) Isothermal amplification of nucleic acids. Chem Rev 115(22):12491–12545CrossRefPubMedGoogle Scholar
  2. 2.
    Ning Y, Zou L, Gao Q, Hu J, Lu F (2018) Graphene oxide-based fluorometric determination of methicillin-resistant Staphylococcus aureus by using target-triggered chain reaction and deoxyribonuclease-assisted recycling. Microchim Acta 185(3):183CrossRefGoogle Scholar
  3. 3.
    Wang H, Zhou Y, Jiang X, Sun B, Zhu Y, Wang H, Su Y, He Y (2015) Simultaneous capture, detection, and inactivation of Bacteria as enabled by a surface-enhanced Raman scattering multifunctional Chip. Angew Chem Int Ed 54(17):5132–5136CrossRefGoogle Scholar
  4. 4.
    Mcclelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413(6858):852–856CrossRefPubMedGoogle Scholar
  5. 5.
    Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314(5804):1464–1467CrossRefPubMedGoogle Scholar
  6. 6.
    Lehner A, Stephan R (2004) Microbiological, epidemiological, and food safety aspects of Enterobacter sakazakii. J Food Prot 67(12):2850–2857CrossRefPubMedGoogle Scholar
  7. 7.
    Yao L, Ye Y, Teng J, Xue F, Pan D, Li B, Chen W (2017) In vitro isothermal nucleic acid amplification assisted surface-enhanced Raman spectroscopic for ultrasensitive detection of Vibrio parahaemolyticus. Anal Chem 89(18):9775–9780CrossRefPubMedGoogle Scholar
  8. 8.
    Vellaisamy K, Li G, Ko C-N, Zhong H-J, Fatima S, Kwan H-Y, Wong C-Y, Kwong W-J, Tan W, Leung C-H, Ma D-L (2018) Cell imaging of dopamine receptor using agonist labeling iridium(III) complex. Chem Sci 9(5):1119–1125CrossRefPubMedGoogle Scholar
  9. 9.
    Hori Y, Otomura N, Nishida A, Nishiura M, Umeno M, Suetake I, Kikuchi K (2018) Synthetic-molecule/protein hybrid probe with Fluorogenic switch for live-cell imaging of DNA methylation. J Am Chem Soc 140(5):1686–1690CrossRefPubMedGoogle Scholar
  10. 10.
    Liu J-B, Yang C, Ko C-N, Kasipandi V, Yang B, Lee M-Y, Leung C-H, Ma D-L (2017) A long lifetime iridium(III) complex as a sensitive luminescent probe for bisulfite detection in living zebrafish. Sensors Actuators B Chem 243:971–976CrossRefGoogle Scholar
  11. 11.
    Wang W, Vellaisamy K, Li G, Wu C, Ko C-N, Leung C-H, Ma D-L (2017) Development of a long-lived luminescence probe for visualizing beta-galactosidase in ovarian carcinoma cells. Anal Chem 89(21):11679–11684CrossRefPubMedGoogle Scholar
  12. 12.
    Trinh KTL, Lee NY (2017) A portable microreactor with minimal accessories for polymerase chain reaction: application to the determination of foodborne pathogens. Microchim Acta 184(11):4225–4233CrossRefGoogle Scholar
  13. 13.
    Deng H, Zhang X, Kumar A, Zou G, Zhang X, Liang X-J (2013) Long genomic DNA amplicons adsorption onto unmodified gold nanoparticles for colorimetric detection of bacillus anthracis. Chem Commun 49(1):51–53CrossRefGoogle Scholar
  14. 14.
    Loman NJ, Constantinidou C, Chan JZM, Halachev M, Sergeant M, Penn CW, Robinson ER, Pallen MJ (2012) High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 10(9):599–606CrossRefPubMedGoogle Scholar
  15. 15.
    Yuan J, Yu Y, Li C, Ma X, Xia Y, Chen J, Wang Z (2014) Visual detection and microplate assay for Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification. Microchim Acta 181(3–4):321–327CrossRefGoogle Scholar
  16. 16.
    Varadi L, Luo JL, Hibbs DE, Perry JD, Anderson RJ, Orenga S, Groundwater PW (2017) Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem Soc Rev 46(16):4818–4832CrossRefPubMedGoogle Scholar
  17. 17.
    Xu Z-R, Wang X, Fan X-F, Wang J-H (2010) An extrusion fluidic driving method for continuous-flow polymerase chain reaction on a microfluidic chip. Microchim Acta 168(1):71–78CrossRefGoogle Scholar
  18. 18.
    Lee NY (2018) A review on microscale polymerase chain reaction based methods in molecular diagnosis, and future prospects for the fabrication of fully integrated portable biomedical devices. Microchim Acta 185(6):285CrossRefGoogle Scholar
  19. 19.
    Gyllensten UB, Erlich HA (1988) Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci USA 85(20):7652–7656CrossRefPubMedGoogle Scholar
  20. 20.
    Lu L, Chan DS-H, Kwong DWJ, He H-Z, Leung C-H, Ma D-L (2014) Detection of nicking endonuclease activity using a G-quadruplex-selective luminescent switch-on probe. Chem Sci 5(12):4561–4568CrossRefGoogle Scholar
  21. 21.
    Zhang D, Wang W, Dong Q, Huang Y, Wen D, Mu Y, Yuan Y (2017) Colorimetric detection of genetically modified organisms based on exonuclease III-assisted target recycling and hemin/G-quadruplex DNAzyme amplification. Microchim Acta 185(1):75CrossRefGoogle Scholar
  22. 22.
    Zhu L, Li C, Zhu Z, Liu D, Zou Y, Wang C, Fu H, Yang CJ (2012) In vitro selection of highly efficient G-Quadruplex-based DNAzymes. Anal Chem 84(19):8383–8390CrossRefPubMedGoogle Scholar
  23. 23.
    Thiramanas R, Jangpatarapongsa K, Tangboriboonrat P, Polpanich D (2013) Detection of Vibrio cholerae using the intrinsic catalytic activity of a magnetic polymeric nanoparticle. Anal Chem 85(12):5996–6002CrossRefPubMedGoogle Scholar
  24. 24.
    Niu X, Chen W, Wang X, Men Y, Wang Q, Sun W, Li G (2018) A graphene modified carbon ionic liquid electrode for voltammetric analysis of the sequence of the Staphylococcus aureus nuc gene. Microchim Acta 185(3):167CrossRefGoogle Scholar
  25. 25.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609CrossRefGoogle Scholar
  26. 26.
    Nie Y, Yang M, Ding Y (2018) Gold nanoparticle enhanced hybridization chain reaction as a method for signal amplification. Application to electrochemical immunodetection of the ovarian cancer biomarker carbohydrate antigen 125. Microchim Acta 185(7):331CrossRefGoogle Scholar
  27. 27.
    Zhang J, Song S, Wang L, Pan D, Fan C (2007) A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat Protoc 2(11):2888–2895CrossRefPubMedGoogle Scholar
  28. 28.
    Wong AC, Wright DW (2016) Size-dependent cellular uptake of DNA functionalized gold nanoparticles. Small 12(40):5592–5600CrossRefPubMedGoogle Scholar
  29. 29.
    Yang J, Lu Y, Ao L, Wang F, Jing W, Zhang S, Liu Y (2017) Colorimetric sensor array for proteins discrimination based on the tunable peroxidase-like activity of AuNPs-DNA conjugates. Sensors Actuators B Chem 245:66–73CrossRefGoogle Scholar
  30. 30.
    Wong JKF, Yip SP, Lee TMH (2012) Silica-modified oligonucleotide-gold nanoparticle conjugate enables closed-tube colorimetric polymerase chain reaction. Small 8(2):214–219CrossRefPubMedGoogle Scholar
  31. 31.
    Ling LS, Butt HJ, Berger R (2004) Rupture force between the third strand and the double strand within a triplex DNA. J Am Chem Soc 126(43):13992–13997CrossRefPubMedGoogle Scholar
  32. 32.
    Ihara T, Ishii T, Araki N, Wilson AW, Jyo A (2009) Silver ion unusually stabilizes the structure of a parallel-motif DNA triplex. J Am Chem Soc 131(11):3826–3827CrossRefPubMedGoogle Scholar
  33. 33.
    Xie WY, Huang WT, Li NB, Luo HQ (2012) Design of a dual-output fluorescent DNA logic gate and detection of silver ions and cysteine based on graphene oxide. Chem Commun 48(1):82–84CrossRefGoogle Scholar
  34. 34.
    Chandrasekaran AR, Rusling DA (2018) Triplex-forming oligonucleotides: a third strand for DNA nanotechnology. Nucleic Acids Res 46(3):1021–1037CrossRefPubMedGoogle Scholar
  35. 35.
    Golub E, Freeman R, Willner I (2013) Hemin/G-Quadruplex-catalyzed aerobic oxidation of thiols to disulfides: application of the process for the development of sensors and Aptasensors and for probing acetylcholine esterase activity. Anal Chem 85(24):12126–12133CrossRefPubMedGoogle Scholar
  36. 36.
    Sharon E, Golub E, Niazov-Elkan A, Balogh D, Willner I (2014) Analysis of telomerase by the Telomeric hemin/G-Quadruplex-controlled aggregation of au nanoparticles in the presence of cysteine. Anal Chem 86(6):3153–3158CrossRefPubMedGoogle Scholar
  37. 37.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science  277(5329):1078–1081Google Scholar
  38. 38.
    Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78(24):8313–8318CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Pierce KE, Sanchez JA, Rice JE, Wangh LJ (2005) Linear-after-the-exponential (LATE)-PCR: primer design criteria for high yields of specific singlestranded DNA and improved real-time detection. Proc Natl Acad Sci USA 102(24):8609–8614CrossRefPubMedGoogle Scholar
  40. 40.
    Kallifidas D, Kang H-S, Brady SF (2012) Tetarimycin a, an MRSA-active antibiotic identified through induced expression of environmental DNA gene clusters. J Am Chem Soc 134(48):19552–19555CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lee YK, Kim HW, Liu CL, Lee HK (2003) A simple method for DNA extraction from marine bacteria that produce extracellular materials. J Microbiol Methods 52(2):245–250CrossRefPubMedGoogle Scholar
  42. 42.
    Li T, Shi L, Wang E, Dong S (2009) Silver-ion-mediated DNAzyme switch for the ultrasensitive and selective colorimetric detection of aqueous Ag+ and cysteine. Chem Eur J 15(14):3347–3350Google Scholar
  43. 43.
    Xiao Z, Guo X, Ling L (2013) Sequence-specific recognition of double-stranded DNA with molecular beacon with the aid of Ag+ under neutral pH environment. Chem Commun 49(34):3573–3575Google Scholar
  44. 44.
    Santamaria-Diaz N, Mendez-Arriaga JM, Salas JM, Galindo MA (2016) Highly stable double-stranded DNA containing sequential silver(I)-mediated 7-Deazaadenine/thymine Watson-Crick Base pairs. Angew Chem Int Ed 55(21):6170–6174CrossRefGoogle Scholar
  45. 45.
    Miao X, Guo X, Xiao Z, Ling L (2014) Electrochemical molecular beacon biosensor for sequence-specific recognition of double-stranded DNA. Biosens Bioelectron 59:54–57CrossRefPubMedGoogle Scholar
  46. 46.
    Xodo LE, Manzini G, Quadrifoglio F (1990) Spectroscopic and calorimetric investigation on the DNA triplex formed by d(CTCTTCTTTCTTTTCTTTCTTCTC) and d(GAGAAGAAAGA) at acidic pH. Nucleic Acids Res 18(12):3557–3564CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    McShan WM, Rossen RD, Laughter AH, Trial J, Kessler DJ, Zendegui JG, Hogan ME, Orson FM (1992) Inhibition of transcription of HIV-1 in infected human cells by oligodeoxynucleotides designed to form DNA triple helices. J Biol Chem 267(8):5712–5721PubMedGoogle Scholar
  48. 48.
    Ambrus A, Chen D, Dai JX, Bialis T, Jones RA, Yang DZ (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34(9):2723–2735CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wu C, Fan D, Zhou C, Liu Y, Wang E (2016) Colorimetric strategy for highly sensitive and selective simultaneous detection of histidine and cysteine based on G-Quadruplex-cu(II) Metalloenzyme. Anal Chem 88(5):2899–2903CrossRefPubMedGoogle Scholar
  50. 50.
    Paramasivan S, Rujan I, Bolton PH (2007) Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding. Methods 43(4):324–331CrossRefPubMedGoogle Scholar
  51. 51.
    Wang X, Teng D, Guan Q, Tian F, Wang J (2015) Detection of genetically modified crops using multiplex asymmetric polymerase chain reaction and asymmetric hyperbranched rolling circle amplification coupled with reverse dot blot. Food Chem 173:1022–1029CrossRefPubMedGoogle Scholar
  52. 52.
    Li R, Xiong C, Xiao Z, Ling L (2012) Colorimetric detection of cholesterol with G-quadruplex-based DNAzymes and ABTS(2-). Anal Chim Acta 724:80–85CrossRefPubMedGoogle Scholar
  53. 53.
    Jung YL, Jung C, Parab H, Li T, Park HG (2010) Direct colorimetric diagnosis of pathogen infections by utilizing thiol-labeled PCR primers and unmodified gold nanoparticles. Biosens Bioelectron 25(8):1941–1946CrossRefPubMedGoogle Scholar
  54. 54.
    Luo R, Li Y, Lin X, Dong F, Zhang W, Yan L, Cheng W, Ju H, Ding S (2014) A colorimetric assay method for invA gene of Salmonella using DNAzyme probe self-assembled gold nanoparticles as single tag. Sensors Actuators B Chem 198:87–93CrossRefGoogle Scholar
  55. 55.
    Ge C, Fang Z, Chen J, Liu J, Lu X, Zeng L (2012) A simple colorimetric detection of DNA methylation. Analyst 137(9):2032–2035CrossRefPubMedGoogle Scholar
  56. 56.
    Song K-M, Jeong E, Jeon W, Cho M, Ban C (2012) Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Anal Bioanal Chem 402(6):2153–2161CrossRefPubMedGoogle Scholar
  57. 57.
    Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X (2018) Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 47(8):2873–2920CrossRefPubMedGoogle Scholar
  58. 58.
    Parkinson GN, Lee MPH, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417(6891):876–880CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Jing Wang
    • 1
  • Haigang Li
    • 1
  • Tingting Li
    • 1
  • Liansheng Ling
    • 1
    Email author
  1. 1.School of ChemistrySun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations