Microchimica Acta

, 185:255 | Cite as

Study of carbon nanotube-rich impedimetric recognition electrode for ultra-low determination of polycyclic aromatic hydrocarbons in water

  • Jose Muñoz
  • Cristina Navarro-Senent
  • Nuria Crivillers
  • Marta Mas-Torrent
Original Paper
  • 78 Downloads

Abstract

Carbon nanotubes (CNTs) have been studied as an electrochemical recognition element for the impedimetric determination of priority polycyclic aromatic hydrocarbons (PAHs) in water, using hexocyanoferrate as a redox probe. For this goal, an indium tin oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying CNTs has been engineered. The electroanalytical method, which is similar to an antibody-antigen assay, is straightforward and exploits the high CNT–PAH affinity obtained via π–interactions. After optimizing the experimental conditions, the resulting CNT-based impedimetric recognition platform exhibits ultra-low detection limits (1.75 ± 0.04 ng·L−1) for the sum of PAHs tested, which was also validated by using a certified reference PAH mixture.

Graphical abstract

Schematic of an indium-tin-oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying carbon nanotubes (CNTs) as a recognition platform for the ultra-low determination of total polycyclic aromatic hydrocarbons (PAHs) in water via π–interactions using Electrochemical Impedance Spectroscopy (EIS).

Keywords

Indium tin oxide Electrochemical impedance spectroscopy Self-assembled monolayers Environmental pollutants Surface engineering 

Notes

Acknowledgments

This work was funded by the ERC StG 2012-306826 e-GAMES. The authors also thank the DGI (Spain) project FANCY CTQ2016-80030-R, the Generalitat de Catalunya (2017-SGR-918) and the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa” Programme for Centers of Excellence in R&D (SEV-2015-0496). Dr. J. Muñoz gratefully acknowledges the “Juan de la Cierva” programme.

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2018_2783_MOESM1_ESM.docx (6.2 mb)
ESM 1 (DOCX 6359 kb)

References

  1. 1.
    Abdel-Shafy HI, Mansour MS (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123CrossRefGoogle Scholar
  2. 2.
    IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum 92:1Google Scholar
  3. 3.
    Kim K-H, Jahan SA, Kabir E, Brown RJ (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80CrossRefGoogle Scholar
  4. 4.
    Bansal V, Kumar P, Kwon EE, Kim K-H (2017) Review of the quantification techniques for polycyclic aromatic hydrocarbons (PAHs) in food products. Crit Rev Food Sci Nutr 57(15):3297–3312CrossRefGoogle Scholar
  5. 5.
    Bruzzoniti MC, Fungi M, Sarzanini C (2010) Determination of EPA's priority pollutant polycyclic aromatic hydrocarbons in drinking waters by solid phase extraction-HPLC. Anal Methods 2:739–745CrossRefGoogle Scholar
  6. 6.
    Saini SS, Kabir A, Rao ALJ, Malik AK, Furton KG (2017) A novel protocol to monitor trace levels of selected polycyclic aromatic hydrocarbons in environmental water using fabric phase Sorptive extraction followed by high performance liquid chromatography-fluorescence detection. Separations 4(2):22CrossRefGoogle Scholar
  7. 7.
    Poster DL, Schantz MM, Sander LC, Wise SA (2006) Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: a critical review of gas chromatographic (GC) methods. Anal Bioanal Chem 386:859–881CrossRefGoogle Scholar
  8. 8.
    Andrews AB, Wang D, Marzec KM, Mullins OC, Crozier KB (2015) Surface enhanced Raman spectroscopy of polycyclic aromatic hydrocarbons and molecular asphaltenes. Chem Phys Lett 620:139–143CrossRefGoogle Scholar
  9. 9.
    Li X, Kaattari SL, Vogelbein MA, Vadas GG, Unger MA (2016) A highly sensitive monoclonal antibody based biosensor for quantifying 3–5 ring polycyclic aromatic hydrocarbons (PAHs) in aqueous environmental samples. Sens Biosensing Res 7:115–120CrossRefGoogle Scholar
  10. 10.
    Du J, Xu J, Sun Z, Jing C (2016) Au nanoparticles grafted on Fe3O4 as effective SERS substrates for label-free detection of the 16 EPA priority polycyclic aromatic hydrocarbons. Anal Chim Acta 915:81–89CrossRefGoogle Scholar
  11. 11.
    Lux G, Langer A, Pschenitza M, Karsunke X, Strasser R, Niessner R, Knopp D, Rant U (2015) Detection of the carcinogenic water pollutant benzo[a]pyrene with an electro-switchable biosurface. Anal Chem 87(8):4538–4545CrossRefGoogle Scholar
  12. 12.
    Lin Y-Y, Liu G, Wai CM, Lin Y (2007) Magnetic beads-based bioelectrochemical immunoassay of polycyclic aromatic hydrocarbons. Electochem Commun 9(7):1547–1552CrossRefGoogle Scholar
  13. 13.
    Ni Y, Wang P, Song H, Lin X, Kokot S (2014) Electrochemical detection of benzo(a)pyrene and related DNA damage using DNA/hemin/nafion–graphene biosensor. Anal Chim Acta 821:34–40CrossRefGoogle Scholar
  14. 14.
    Cho H-H, Smith BA, Wnuk JD, Fairbrother DH, Ball WP (2008) Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes. Environ Sci Technol 42:2899–2905CrossRefGoogle Scholar
  15. 15.
    Del Carlo M, Di Marcello M, Perugini M, Ponzielli V, Sergi M, Mascini M, Compagnone D (2008) Electrocehmical DNA biosensor for polycyclic aromatic hydrocarbons detection. Microchim Acta 163(3–4):163–169CrossRefGoogle Scholar
  16. 16.
    Muñoz J, Crivillers N, Mas-Torrent M (2017) Carbon-rich monolayers on ITO as highly sensitive platforms for detecting polycyclic aromatic hydrocarbons in water: the case of pyrene. Chem Eur J 23(61):15289–15293CrossRefGoogle Scholar
  17. 17.
    Casalini S, Bortolotti CA, Leonardi F, Biscarini F (2017) Self-assembled monolayers in organic electronics. Chem Soc Rev 46(1):40–71CrossRefGoogle Scholar
  18. 18.
    Chaki NK, Vijayamohanan K (2002) Self-assembled monolayers as a tunable platform for biosensors applications. Biosens Bioelectron 17(1–2):1–12CrossRefGoogle Scholar
  19. 19.
    Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42(24):9005–9013CrossRefGoogle Scholar
  20. 20.
    Leyton P, Gómez-Jeria J, Sanchez-Cortes S, Domingo C, Campos-Vallette M (2006) Carbon nanotube bundles as molecular assemblies for the detection of polycyclic aromatic hydrocarbons: surface-enhanced resonance Raman spectroscopy and theoretical studies. J Phys Chem B 110:6470–6474CrossRefGoogle Scholar
  21. 21.
    Ma J, Xiao R, Li J, Yu J, Zhang Y, Chen L (2010) Determination of 16 polycyclic aromatic hydrocarbons in environmental water samples by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with gas chromatography–mass spectrometry. J Chromatogr A 1217:5462–5469CrossRefGoogle Scholar
  22. 22.
    Shen M, Xia X, Wang F, Zhang P, Zhao X (2012) Influences of multiwalled carbon nanotubes and plant residue chars on bioaccumulation of polycyclic aromatic hydrocarbons by Chironomus plumosus larvae in sediment. Environ Toxicol Chem 31:202–209CrossRefGoogle Scholar
  23. 23.
    Thiruppathi M, Thiyagarajan N, Gopinathan M, Zen J-M (2016) Role of defect sites and oxygen functionalities on preanodized screen printed carbon electrode for adsorption and oxidation of polyaromatic hydrocarbons. Electrochem Commun 69:15–18CrossRefGoogle Scholar
  24. 24.
    Muñoz J, Bastos-Arrieta J, Muñoz M, Muraviev D, Céspedes F, Baeza M (2016) CdS quantum dots as a scattering nanomaterial of carbon nanotubes in polymeric nanocomposite sensors for microelectrode array behavior. J Matter Sci 51(3):1610-1619Google Scholar
  25. 25.
    Cabana L, González-Campo A, Ke X, Van Tendeloo G, Núñez R, Tobias G (2015) Efficient chemical modification of carbon nanotubes with Metallacarboranes. Chem Eur J 21:16792–16795CrossRefGoogle Scholar
  26. 26.
    Yang K, Zhu L, Xing B (2006) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40(6):1855–1186CrossRefGoogle Scholar
  27. 27.
    Marchante E, Crivillers N, Buhl M, Veciana J, Mas-Torrent M (2016) An electrically driven and readable molecular monolayer switch based on a solid electrolyte. Angew Chem Int Ed 128(1):376–380CrossRefGoogle Scholar
  28. 28.
    Muñoz J, Montes R, Baeza M (2017) Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: characterization, architecture surface and bio-sensing. Trends Anal Chem 97:201–215CrossRefGoogle Scholar
  29. 29.
    Pumera M (2009) The electrochemistry of carbon nanotubes: fundamentals and applications. Chem Eur J 15(20):4970–4978CrossRefGoogle Scholar
  30. 30.
    Pumera M (2007) Electrochemical properties of double wall carbon nanotube electrodes. Nanoscale Res Lett 2(2):87–93CrossRefGoogle Scholar
  31. 31.
    Nielsen T, Siigur K, Helweg C, Jørgensen O, Hansen PE, Kirso U (1997) Sorption of polycyclic aromatic compounds to humic acid as studied by high-performance liquid chromatography. Environ Sci Technol 31(4):1102–1108CrossRefGoogle Scholar
  32. 32.
    Rajabi M, Moghadam AG, Barfi B, Asghari A (2016) Air-assisted dispersive micro-solid phase extraction of polycyclic aromatic hydrocarbons using a magnetic graphitic carbon nitride nanocomposite. Microchim Acta 183(4):1449–1458CrossRefGoogle Scholar
  33. 33.
    Tiu BDB, Krupadam RJ, Advincula RC (2016) Pyrene-imprinted polythiophene sensors for detection of polycyclic aromatic hydrocarbons. Sensors Actuators B Chem 228:693–701CrossRefGoogle Scholar
  34. 34.
    Wang W, Ma R, Wu Q, Wang C, Wang Z (2013) Magnetic microsphere-confined graphene for the extraction of polycyclic aromatic hydrocarbons from environmental water samples coupled with high performance liquid chromatography–fluorescence analysis. J Chromatogr A 1293:20–27CrossRefGoogle Scholar
  35. 35.
    Menezes HC, de Barcelos SMR, Macedo DFD, Purceno AD, Machado BF, Teixeira APC, Lago RM, Serp P, Cardeal ZL (2015) Magnetic N-doped carbon nanotubes: a versatile and efficient material for the determination of polycyclic aromatic hydrocarbons in environmental water samples. Anal Chim Acta 873:51–56CrossRefGoogle Scholar
  36. 36.
    Han Q, Wang Z, Xia J, Chen S, Zhang X, Ding M (2012) Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta 101:388–395CrossRefGoogle Scholar
  37. 37.
    Wang W-D, Huang Y-M, Shu W-Q, Cao J (2007) Multiwalled carbon nanotubes as adsorbents of solid-phase extraction for determination of polycyclic aromatic hydrocarbons in environmental waters coupled with high-performance liquid chromatography. J Chromatogr A 1173(1–2):27–36CrossRefGoogle Scholar
  38. 38.
    Fähnrich K, Pravda M, Guilbault G (2003) Disposable amperometric immunosensor for the detection of polycyclic aromatic hydrocarbons (PAHs) using screen-printed electrodes. Biosens Bioelectron 18(1):73–82CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Jose Muñoz
    • 1
  • Cristina Navarro-Senent
    • 1
  • Nuria Crivillers
    • 1
    • 2
  • Marta Mas-Torrent
    • 1
    • 2
  1. 1.Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)BellaterraSpain
  2. 2.Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN)BellaterraSpain

Personalised recommendations