Microchimica Acta

, 185:235 | Cite as

Colorimetric detection of Hg(II) by measurement the color alterations from the “before” and “after” RGB images of etched triangular silver nanoplates

Original Paper
  • 111 Downloads

Abstract

It is shown that triangular silver nanoplates (TAgNPs) are viable colorimetric probes for the fast, sensitive and selective detection of Hg(II). Detection is accomplished by reducing Hg(II) ions to elemental Hg so that an Ag/Hg amalgam is formed on the surface of the TAgNPs. This leads to the inhibition of the etching TAgNPs by chloride ions. Correspondingly, a distinct color transition can be observed that goes from yellow to brown, purple, and blue. The color alterations extracted from the red, green, and blue part of digital (RGB) images can be applied to the determination of Hg(II). The relationship between the Euclidean distances (EDs), i.e. the square roots of the sums of the squares of the ΔRGB values, vary in the 5 nM to 100 nM Hg(II) concentration range, and the limit of detection is as low as 0.35 nM. The color changes also allow for a visual estimation of the concentrations of Hg(II). The method is simple in that it only requires a digital camera for data acquisition and a Photoshop software for extracting RGB variations and data processing.

Graphical abstract

Hg2+ detection was achieved by anti-etching of TAgNPs caused by the formation of silver amalgam, along with vivid multicolor variations from yellow to brown, purple, and eventually to be blue.

Keywords

Triangular silver nanoplates Mercury ions Colorimetric probe RGB images Digital camera Photoshop software Euclidean distance 

Notes

Acknowledgements

All authors gratefully acknowledge the financial support of Scientific Research Project of Beijing Educational Committee (Grant No. KM201710028009).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2759_MOESM1_ESM.doc (530 kb)
ESM 1 (DOC 530 kb)

References

  1. 1.
    Bings NH, Bogaerts A, Broekaert JAC (2006) Atomic spectroscopy. Anal Chem 78:3917–3945CrossRefGoogle Scholar
  2. 2.
    Wang Y, Yang F, Yang XR (2010) Colorimetric biosensing of mercury(II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Biosens Bioelectron 25:1994–1998CrossRefGoogle Scholar
  3. 3.
    Mohan A, Kizhakayil RN (2016) Graphene-rhodamine nanoprobe for colorimetric and fluorimetric Hg2+ ion assay. ACS Appl Mater Interfaces 8:14125–14132CrossRefGoogle Scholar
  4. 4.
    Lopez-Garcia I, Rivas RE, Hernandez-Cordoba M (2012) Hollow fiber based liquid-phase microextraction for the determination of mercury traces in water samples by electrothermal atomic absorption spectrometry. Anal Chim Acta 743:69–74CrossRefGoogle Scholar
  5. 5.
    Li Y, Chen C, Li B, Sun J, Wang JX, Gao YX, Zhao YL, Chai ZF (2006) Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. J Anal At Spectrom 21:94–96CrossRefGoogle Scholar
  6. 6.
    Edwards SC, Macleod CL, Corns WT, Williams TP, Lester JN (1996) Determination of organo-mercury and mercury in environmental samples by flow injection atomic fluorescence spectrophotometry. Int J Environ Anal Chem 63:187–193CrossRefGoogle Scholar
  7. 7.
    Yan WJ, Wang YJ, Zhuang H, Zhang JH (2015) DNA-engineered chiroplasmonic heteropyramids for ultrasensitive detection of mercury ion. Biosens Bioelectron 68:516–520CrossRefGoogle Scholar
  8. 8.
    Zhang T, Cheng ZG, Wang YB, Li ZG, Wang CX, Li YB, Fang Y (2010) Self-assembled 1-octadecanethiol monolayers on graphene for mercury detection. Nano Lett 10:4738–4741CrossRefGoogle Scholar
  9. 9.
    Zhang HY, Yang LQ, Zhou BJ, Liu WM, Ge JEC, Wu JS, Wang Y, Wang PF (2013) Ultrasensitive and selective gold film-based detection of mercury (II) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time. Biosens Bioelectron 47:391–395CrossRefGoogle Scholar
  10. 10.
    Liang GH, Zhang P, Li HX, Zhang ZY, Chen H, Zhang S (2012) Kong JL (2012) an efficient strategy for unmodified nucleotide-mediated dispersion of magnetic nanoparticles, leading to a highly sensitive MRI-based mercury ion assay. Anal Chim Acta 726:73–78CrossRefGoogle Scholar
  11. 11.
    Xu LG, Yin HH, Ma W, Kuang H, Wang LB, Xu CL (2015) Ultrasensitive SERS detection of mercury based on the assembled gold nanochains. Biosens Bioelectron 67:472–476CrossRefGoogle Scholar
  12. 12.
    Zhang ZP, Tang AA, Liao SZ, Chen PF, Wu ZY, Shen GL, Yu RQ (2011) Oligonucleotide probes applied for sensitive enzyme-amplified electrochemical assay of mercury(II) ions. Biosens Bioelectron 26:3320–3324CrossRefGoogle Scholar
  13. 13.
    Yang YQ, Kang MM, Fang SM, Wang MH, He LH, Zhao JH, Zhang HZ, Zhang ZH (2015) Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions. Sensors Actuators B Chem 214:63–69CrossRefGoogle Scholar
  14. 14.
    Zarlaida F, Adlim M (2017) Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury(II) ions: a review. Microchim Acta 184:45–58CrossRefGoogle Scholar
  15. 15.
    Liu XJ, Wu ZJ, Zhang QQ, Zhao WF, Zong CH, Gai HW (2016) Single gold nanoparticle-based colorimetric detection of picomolar mercury ion with dark-field microscopy. Anal Chem 88:2119–2124CrossRefGoogle Scholar
  16. 16.
    Liu QY, Yang YT, Li H, Zhu RR, Shao Q, Yang SG, Xu JJ (2015) NiO nanoparticles modified with 5,10,15,20-tetrakis (4-carboxyl pheyl)-porphyrin: promising peroxidase mimetics for H2O2 and glucose detection. Biosens Bioelectron 64:147–153CrossRefGoogle Scholar
  17. 17.
    Zhang LY, Chen MX, Jiang YL, Chen MM, Ding YN, Liu QY (2017) A facile preparation of montmorillonite-supported copper sulfide nanocomposites and their application in the detection of H2O2. Sensors Actuators B Chem 239:28–35CrossRefGoogle Scholar
  18. 18.
    Sun LF, Ding YY, Jiang YL, Liu QY (2017) Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sensors Actuators B Chem 239:848–856CrossRefGoogle Scholar
  19. 19.
    Liu QY, Yang YT, Lv XT, Ding YN, Zhang YZ, Jing JJ, Xu CX (2017) One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection. Sensors Actuators B Chem 240:726–734CrossRefGoogle Scholar
  20. 20.
    Li YL, Li ZH, Gao YX, Gong A, Zhang YJ, Hosmane NS, Shen ZY, Wu AG (2014) “Red-to-blue” colorimetric detection of cysteine via anti-etching of silver nanoprisms. Nano 6:10631–10637Google Scholar
  21. 21.
    Deng L, Ouyang XY, Jin JY, Ma C, Jiang Y, Zheng J, Li JS, Li YH, Tan WH, Yang RH (2013) Exploiting the higher specificity of silver amalgamation: selective detection of mercury(II) by forming ag/hg amalgam. Anal Chem 85:8594–8600CrossRefGoogle Scholar
  22. 22.
    Fang X, Ren H, Zhao H, Li Z (2017) Ultrasensitive visual and colorimetric determination of dopamine based on the prevention of etching of silver nanoprisms by chloride. Microchim Acta 184:415–421CrossRefGoogle Scholar
  23. 23.
    Gong Y, Zhang X, Chen Z, Yuan Y, Jin Z, Mei L, Zhang J, Tan W, Shen G, Yu R (2012) An efficient rhodamine thiospirolactam-based fluorescent probe for detection of Hg2+ in aqueous samples. Analyst 137:932–938CrossRefGoogle Scholar
  24. 24.
    Bi N, Hu M, Xu J, Jia L (2017) Colorimetric determination of mercury(II) based on the inhibition of the aggregation of gold nanorods coated with 6-mercaptopurine. Microchim Acta 184:3961–3967CrossRefGoogle Scholar
  25. 25.
    Liu S, Leng X, Wang X, Pei Q, Cui X, Wang Y, Huang J (2017) Enzyme-free colorimetric assay for mercury(II) using DNA conjugated to gold nanoparticles and strand displacement amplification. Microchim Acta 184:1969–1976CrossRefGoogle Scholar
  26. 26.
    Zhan L, Yang T, Zhen SJ, Huang CZ (2017) Cytosine triphosphate-capped silver nanoparticles as a platform for visual and colorimetric determination of mercury(II) and chromium(III). Microchim Acta 184:3171–3178CrossRefGoogle Scholar
  27. 27.
    Zangeneh KK, Pandikumar A, Jayabal S, Ramaraj R, Lim HN, Ong BH, Bien CSD, Kee YY, Huang NM (2016) Amalgamation based optical and colorimetric sensing of mercury(II) ions with silver@graphene oxide nanocomposite materials. Microchim Acta 183:369–377CrossRefGoogle Scholar
  28. 28.
    Rameshkumar P, Huang NM, Wei LS (2016) Visual and spectrophotometric determination of mercury(II) using silver nanoparticles modified with graphene oxide. Microchim Acta 183:597–603CrossRefGoogle Scholar
  29. 29.
    Yang R, Song D, Wang CW, Zhu AN, Xiao R, Liu JQ, Long F (2015) Etching of unmodified au@ag nanorods: a tunable colorimetric visualization for the rapid and high selective detection of Hg2+. RSC Adv 5:102542–102549CrossRefGoogle Scholar
  30. 30.
    Wang YW, Wang LX, An FP, Xu H, Yin ZJ, Tang SR, Yang HH, Song HB (2017) Graphitic carbon nitride supported platinum nanocomposites for rapid and sensitive colorimetric detection of mercury ions. Anal Chim Acta 980:72–78CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringXinxiang UniversityXinxiangChina
  2. 2.Department of ChemistryCapital Normal UniversityBeijingChina

Personalised recommendations