Microchimica Acta

, 185:87 | Cite as

A glassy carbon electrode modified with N-doped carbon dots for improved detection of hydrogen peroxide and paracetamol

  • Li FuEmail author
  • Aiwu Wang
  • Guosong Lai
  • Cheng-Te Lin
  • Jinhong Yu
  • Aimin Yu
  • Zhong Liu
  • Kefeng Xie
  • Weitao SuEmail author
Original Paper


Nitrogen doped carbon dots (NCDs) were synthesized using a low temperature approach and used to modify a glassy carbon electrode (GCE) via dipping. The oxygen groups on the surface of the NCDs, and the charge delocalization of the NCDs warrant an excellent electrocatalytic activity of the GCE toward oxidation of paracetamol (PA) and reduction of H2O2. PA and H2O2 were detected at 0.34 V and −0.4 V (both vs. Ag/AgCl) using differential pulse voltammetry and amperometric I-T measurement, respectively. The modified GCE has a linear response to PA in the 0.5 to 600 μM concentration range, and to H2O2 in the 0.05 μM to 2.25 mM concentration range. The detection limits are 157 nM and 41 nM, respectively. In our perception, the modified GCE holds promise for stable, selective and sensitive determination of PA and H2O2 in pharmaceutical analysis.

Graphic abstract

Nitrogen doped carbon dots (NCDs) were synthesized and used to modify a glassy carbon electrode. Surface functional groups on NCDs can trigger electrocatalytic reactions toward paracetamol oxidation and H2O2 reduction with high sensitivities.


Low temperature synthesis Surface functional group Electrode modification Cyclic voltammetry Differential pulse voltammetry Pharmaceutical analysis H2O2 disinfector Electrochemical sensor Nanomaterial 



This work has been financially supported by Research Foundation from Hangzhou Dianzi University (KYS205617071) and Zhejiang Province Natural Science Foundation of China (LQ18E010001).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2646_MOESM1_ESM.docx (261 kb)
ESM 1 (DOCX 261 kb)


  1. 1.
    Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8(2):355–381CrossRefGoogle Scholar
  2. 2.
    Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C, Lin H (2015) Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Edit 54(18):5360–5363CrossRefGoogle Scholar
  3. 3.
    Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822CrossRefGoogle Scholar
  4. 4.
    Zhang L, Han Y, Zhu J, Zhai Y, Dong S (2015) Simple and sensitive fluorescent and electrochemical trinitrotoluene sensors based on aqueous carbon dots. Anal Chem 87(4):2033–2036CrossRefGoogle Scholar
  5. 5.
    Yu L, Yue X, Yang R, Jing S, Qu L (2016) A sensitive and low toxicity electrochemical sensor for 2, 4-dichlorophenol based on the nanocomposite of carbon dots, hexadecyltrimethyl ammonium bromide and chitosan. Sensor Actuat B-Chem 224:241–247CrossRefGoogle Scholar
  6. 6.
    Huang Q, Lin X, Zhu JJ, Tong QX (2017) Pd-Au@ carbon dots nanocomposite: Facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum. Biosens Bioelectron 94:507–512CrossRefGoogle Scholar
  7. 7.
    Guo W, Pi F, Zhang H, Sun J, Zhang Y, Sun X (2017) A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of Patulin. Biosens Bioelectron 98:299–304CrossRefGoogle Scholar
  8. 8.
    Huang Q, Lin X, Lin C, Zhang Y, Hu S, Wei C (2015) A high performance electrochemical biosensor based on Cu2O–carbon dots for selective and sensitive determination of dopamine in human serum. RSC Adv 5(67):54102–54108CrossRefGoogle Scholar
  9. 9.
    Wei C, Huang Q, Hu S, Zhang H, Zhang W, Wang Z, Zhu M, Dai P, Huang L (2014) Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at Nafion/multi-walled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode. Electrochim Acta 149:237–244CrossRefGoogle Scholar
  10. 10.
    Jiang G, Jiang T, Zhou H, Yao J, Kong X (2015) Preparation of N-doped carbon quantum dots for highly sensitive detection of dopamine by an electrochemical method. RSC Adv 5(12):9064–9068CrossRefGoogle Scholar
  11. 11.
    Li Q, Xu Z, Tang W, Wu Y (2015) Determination of Dopamine with a Modified Carbon Dot Electrode. Anal Lett 48(13):2040–2050CrossRefGoogle Scholar
  12. 12.
    Yuan YH, Liu ZX, Li RS, Zou HY, Lin M, Liu H, Huang CZ (2016) Synthesis of nitrogen-doping carbon dots with different photoluminescence properties by controlling the surface states. Nano 8(12):6770–6776Google Scholar
  13. 13.
    Guo Q, Zhang M, Zhou G, Zhu L, Feng Y, Wang H, Zhong B, Hou H (2016) Highly sensitive simultaneous electrochemical detection of hydroquinone and catechol with three-dimensional N-doping carbon nanotube film electrode. J Electroanal Chem 760:15–23CrossRefGoogle Scholar
  14. 14.
    Xu G, Han J, Ding B, Nie P, Pan J, Dou H, Li H, Zhang X (2015) Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem 17(3):1668–1674CrossRefGoogle Scholar
  15. 15.
    Sharma D, Jaggi N (2017) Co-doping as a tool for tuning the optical properties of singlewalled carbon nanotubes: A first principles study. Phys E 91:93–100CrossRefGoogle Scholar
  16. 16.
    Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181(7–8):689–705CrossRefGoogle Scholar
  17. 17.
    Gatselou VA, Giokas DL, Vlessidis AG, Prodromidis MI (2015) Rhodium nanoparticle-modified screen-printed graphite electrodes for the determination of hydrogen peroxide in tea extracts in the presence of oxygen. Talanta 134:482–487CrossRefGoogle Scholar
  18. 18.
    Barman MK, Jana B, Bhattacharyya S, Patra A (2014) Photophysical properties of doped carbon dots (N, P, and B) and their influence on electron/hole transfer in carbon dots–nickel (II) phthalocyanine conjugates. J Phys Chem C 118(34):20034–20041CrossRefGoogle Scholar
  19. 19.
    Li L, Liu D, Wang K, Mao H, You T (2017) Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor. Sensor Actuat B-Chem 252:17–23CrossRefGoogle Scholar
  20. 20.
    Li Y, Zhong Y, Zhang Y, Weng W, Li S (2015) Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. Sensor Actuat B-Chem 206:735–743CrossRefGoogle Scholar
  21. 21.
    Hsu SC, Cheng HT, PX W, Weng CJ, Santiago KS, Yeh JM (2017) Electrochemical sensor constructed using a carbon paste electrode modified with mesoporous silica encapsulating pani chains decorated with gnps for detection of ascorbic acid. Electrochim Acta 238:246–256CrossRefGoogle Scholar
  22. 22.
    Liu X, Li L, Meng C, Han Y (2012) Palladium nanoparticles/defective graphene composites as oxygen reduction electrocatalysts: a first-principles study. J Phys Chem C 116(4):2710–2719CrossRefGoogle Scholar
  23. 23.
    Stergiou DV, Diamanti EK, Gournis D, Prodromidis MI (2010) Comparative study of different types of graphenes as electrocatalysts for ascorbic acid. Electrochem Commun 12(10):1307–1309CrossRefGoogle Scholar
  24. 24.
    Chen CW, Liu ZT, Zhang YZ, Ye JS, Lee CL (2015) Sonoelectrochemical intercalation and exfoliation for the preparation of defective graphene sheets and their application as nonenzymatic H2O2 sensors and oxygen reduction catalysts. RSC Adv 5(28):21988–21998CrossRefGoogle Scholar
  25. 25.
    Pumera M (2009) Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec 9(4):211–223CrossRefGoogle Scholar
  26. 26.
    Luque G, Rojas M, Rivas G, Leiva E (2010) The origin of the catalysis of hydrogen peroxide reduction by functionalized graphene surfaces: A density functional theory study. Electrochim Acta 56(1):523–530CrossRefGoogle Scholar
  27. 27.
    Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798CrossRefGoogle Scholar
  28. 28.
    Fu L, Lai G, Yu A (2015) Preparation of β-cyclodextrin functionalized reduced graphene oxide: application for electrochemical determination of paracetamol. RSC Adv 5(94):76973–76978CrossRefGoogle Scholar
  29. 29.
    Hassan SS, Panhwar S, Nafady A, Al-Enizi AM, Sherazi STH, Kalhoro MS, Arain M, Shah MR, Talpur MY (2017) Fabrication of highly sensitive and selective electrochemical sensors for detection of paracetamol by using piroxicam stabilized gold nanoparticles. J Electrochem Soc 164(9):B427–B434CrossRefGoogle Scholar
  30. 30.
    Currie LA (1999) Detection and quantification limits: origins and historical overview. Anal Chim Acta 391(2):127–134CrossRefGoogle Scholar
  31. 31.
    Huang Y, Cheng C, Tian X, Zheng B, Li Y, Yuan H, Xiao D, Choi MMF (2013) Low-potential amperometric detection of dopamine based on MnO2 nanowires/chitosan modified gold electrode. Electrochim Acta 89:832–839CrossRefGoogle Scholar
  32. 32.
    Chen PY, Vittal R, Nien PC, Ho KC (2009) Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion®. Biosens Bioelectron 24(12):3504–3509CrossRefGoogle Scholar
  33. 33.
    He G, Jiang J, Wu D, You Y, Yang X, Wu F, Hu Y (2016) A novel nonenzymatic hydrogen peroxide electrochemical sensor based on facile synthesis of copper oxide nanoparticles dopping into graphene sheets@ cerium oxide nanocomposites sensitized screen printed electrode. Int J Electrochem Sc 11(10):8486–8498CrossRefGoogle Scholar
  34. 34.
    Li SJ, Xing Y, Yang HY, Huang JY, Wang WT, Liu RT (2017) Electrochemical Synthesis of a Binary Mn-Co Oxides Decorated Graphene Nanocomposites for Application in Nonenzymatic H2O2 Sensing. Int J Electrochem Sc 12:6566–6576CrossRefGoogle Scholar
  35. 35.
    Ni Y, Liao Y, Zheng M, Shao S (2017) In-situ growth of Co3O4 nanoparticles on mesoporous carbon nanofibers: a new nanocomposite for nonenzymatic amperometric sensing of H2O2. Microchimi Acta 184(10):3689–3695CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Li Fu
    • 1
    Email author
  • Aiwu Wang
    • 2
  • Guosong Lai
    • 3
  • Cheng-Te Lin
    • 4
  • Jinhong Yu
    • 4
  • Aimin Yu
    • 3
    • 5
  • Zhong Liu
    • 6
  • Kefeng Xie
    • 7
  • Weitao Su
    • 1
    Email author
  1. 1.College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouPeople’s Republic of China
  2. 2.Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials ScienceCity University of Hong KongHong KongHong Kong
  3. 3.Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of ChemistryHubei Normal UniversityHuangshiPeople’s Republic of China
  4. 4.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina
  5. 5.Department of Chemistry and Biotechnology, Faculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornAustralia
  6. 6.Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Resources, Qinghai Institute of Salt LakesChinese Academy of SciencesXiningPeople’s Republic of China
  7. 7.State Key Laboratory of Plateau Ecology and AgricultureQinghai UniversityXiningPeople’s Republic of China

Personalised recommendations