Skip to main content
Log in

Effect of grain-size on the ethanol vapor sensing properties of room-temperature sputtered ZnO thin films

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have investigated the gas sensing properties of ZnO thin films (100 to 200 nm thickness) deposited by room-temperature radio frequency magnetron sputtering. The sensitivity of the films to ethanol vapor was measured in the 10 to 50 ppm concentration range at operating temperatures between 200 and 400 °C. A synergetic effect of decreasing grain size and increasing operating temperature was observed towards the improvement of the sensitivity, reaching a value of 54 and a limit of detection as low as 0.61 ppm. The decrease in the grain size resulted in prolonged response time but faster recovery. In any case, both response time and recovery time are < 400 s. The results demonstrate that room-temperature magnetron sputtering is a viable approach to enhance the performances of ZnO films in sensors for ethanol vapor.

Sensor response for ZnO films in presence of 50 ppm ethanol as a function grain size and temperature

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang L, Kang Y, Liu X et al (2012) ZnO nanorod gas sensor for ethanol detection. Sensors Actuators B Chem 162:237–243. doi:10.1016/j.snb.2011.12.073

    Article  CAS  Google Scholar 

  2. Xu J, Pan Q, Shun Y, Tian Z (2000) Grain size control and gas sensing properties of ZnO gas sensor. Sensors Actuators B Chem 66:277–279. doi:10.1016/S0925-4005(00)00381-6

    Article  CAS  Google Scholar 

  3. Calestani D, Zha M, Mosca R et al (2010) Growth of ZnO tetrapods for nanostructure-based gas sensors. Sensors Actuators B Chem 144:472–478. doi:10.1016/j.snb.2009.11.009

    Article  CAS  Google Scholar 

  4. Ho J-J, Fang Y, Wu K et al (1998) High sensitivity ethanol gas sensor integrated with a solid-state heater and thermal isolation improvement structure for legal drink-drive limit detecting. Sensors Actuators B Chem 50:227–233. doi:10.1016/S0925-4005(98)00240-8

    Article  CAS  Google Scholar 

  5. Gurlo A (2006) Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. ChemPhysChem 7:2041–2052. doi:10.1002/cphc.200600292

    Article  CAS  Google Scholar 

  6. Zemel JN (1988) Theoretical description of gas-film interaction on SnOx. Thin Solid Films 163:189–202. doi:10.1016/0040-6090(88)90424-5

    Article  CAS  Google Scholar 

  7. Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R Rep 61:1–39. doi:10.1016/j.mser.2008.02.001

    Article  Google Scholar 

  8. Wang X, Yee SS, Carey WP (1995) Transition between neck-controlled and grain-boundary-controlled sensitivity of metal-oxide gas sensors. Sensors Actuators B Chem 25:454–457. doi:10.1016/0925-4005(94)01395-0

    Article  CAS  Google Scholar 

  9. Xu C, Tamaki J, Miura N, Yamazoe N (1991) Grain size effects on gas sensitivity of porous SnO2-based elements. Sensors Actuators B Chem 3:147–155. doi:10.1016/0925-4005(91)80207-Z

    Article  CAS  Google Scholar 

  10. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167. doi:10.1023/A:1014405811371

    Article  CAS  Google Scholar 

  11. Wan Q, Li QH, Chen YJ et al (2004) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett 84:3654. doi:10.1063/1.1738932

    Article  CAS  Google Scholar 

  12. Choopun S, Hongsith N, Mangkorntong P, Mangkorntong N (2007) Zinc oxide nanobelts by RF sputtering for ethanol sensor. Phys E Low-dimensional Syst Nanostruct 39:53–56. doi:10.1016/j.physe.2006.12.053

    Article  CAS  Google Scholar 

  13. Chou SM, Teoh LG, Lai WH et al (2006) ZnO:Al thin film gas sensor for detection of ethanol vapor. Sensors 6:1420–1427. doi:10.3390/s6101420

    Article  CAS  Google Scholar 

  14. Rahman MM, Jamal A, Khan SB, Faisal M (2011) Highly sensitive ethanol chemical sensor based on Ni-doped SnO2 nanostructure materials. Biosens Bioelectron 28:127–134. doi:10.1016/j.bios.2011.07.024

    Article  CAS  Google Scholar 

  15. Zhao Y, Yan X, Kang Z et al (2013) Highly sensitive uric acid biosensor based on individual zinc oxide micro/nanowires. Microchim Acta 180:759–766. doi:10.1007/s00604-013-0981-z

    Article  CAS  Google Scholar 

  16. Choopun S, Tabata H, Kawai T (2005) Self-assembly ZnO nanorods by pulsed laser deposition under argon atmosphere. J Cryst Growth 274:167–172. doi:10.1016/j.jcrysgro.2004.10.017

    Article  CAS  Google Scholar 

  17. Podobinski D, Zanin S, Pruna A, Pullini D (2013) Effect of annealing and room temperature sputtering power on optoelectronic properties of pure and Al-doped ZnO thin films. Ceram Int 39:1021–1027. doi:10.1016/j.ceramint.2012.07.022

    Article  CAS  Google Scholar 

  18. Pullini D, Pruna A, Zanin S, Mataix DB (2012) High-efficiency electrodeposition of large scale ZnO nanorod arrays for thin transparent electrodes. J Electrochem Soc 159:E45. doi:10.1149/2.093202jes

    Article  CAS  Google Scholar 

  19. Cembrero J, Pruna A, Pullini D, Busquets-Mataix D (2014) Effect of combined chemical and electrochemical reduction of graphene oxide on morphology and structure of electrodeposited ZnO. Ceram Int 40:10351–10357. doi:10.1016/j.ceramint.2014.03.008

    Article  CAS  Google Scholar 

  20. Samarasekara P, Kumara NTRN, Yapa NUS (2006) Sputtered copper oxide (CuO) thin films for gas sensor devices. J Phys Condens Matter 18:2417–2420. doi:10.1088/0953-8984/18/8/007

    Article  CAS  Google Scholar 

  21. SAITO N, WATANABE K, AUBERT T et al (2014) Annealing effect on microstructure of ZnO nano-particulate films and VOC gas sensing property. J Ceram Soc Jpn 122:267–270. doi:10.2109/jcersj2.122.267

    Article  CAS  Google Scholar 

  22. Zeng J, Hu M, Wang W et al (2012) NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film. Sensors Actuators B Chem 161:447–452. doi:10.1016/j.snb.2011.10.059

    Article  CAS  Google Scholar 

  23. Hassan MM, Khan W, Naqvi AH et al (2014) Fe dopants enhancing ethanol sensitivity of ZnO thin film deposited by RF magnetron sputtering. J Mater Sci 49:6248–6256. doi:10.1007/s10853-014-8349-2

    Article  CAS  Google Scholar 

  24. Shariffudin SS, Salina M, Herman SH, Rusop M (2012) Effect of film thickness on structural, electrical, and optical properties of sol–gel deposited layer-by-layer ZnO nanoparticles. Trans Electr Electron Mater 13:102–105. doi:10.4313/TEEM.2012.13.2.102

    Article  Google Scholar 

  25. Calestani D, Mosca R, Zanichelli M et al (2011) Aldehyde detection by ZnO tetrapod-based gas sensors. J Mater Chem 21:15532. doi:10.1039/c1jm12561c

    Article  CAS  Google Scholar 

  26. Kim MS, Kim TH, Kim DY et al (2012) Effects of annealing atmosphere and temperature on properties of ZnO thin films on porous silicon grown by plasma-assisted molecular beam epitaxy. Electron Mater Lett 8:123–129. doi:10.1007/s13391-012-1089-z

    Article  CAS  Google Scholar 

  27. Horcas I, Fernández R, Gómez-Rodríguez JM et al (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705. doi:10.1063/1.2432410

    Article  CAS  Google Scholar 

  28. Noack V, Eychmüller A (2002) Annealing of nanometer-sized zinc oxide particles. Chem Mater 14:1411–1417. doi:10.1021/cm011262i

    Article  CAS  Google Scholar 

  29. Jian-Ping X, Shao-Bo S, Lan L et al (2010) Effects of annealing temperature on structural and optical properties of ZnO thin films. Chin Phys Lett 27:047803. doi:10.1088/0256-307X/27/4/047803

    Article  Google Scholar 

  30. Trinh TT, Tu NH, Le HH et al (2011) Improving the ethanol sensing of ZnO nano-particle thin films—the correlation between the grain size and the sensing mechanism. Sensors Actuators B Chem 152:73–81. doi:10.1016/j.snb.2010.09.045

    Article  CAS  Google Scholar 

  31. Qin N, Xiang Q, Zhao H et al (2014) Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties. CrystEngComm 16:7062. doi:10.1039/C4CE00637B

    Article  CAS  Google Scholar 

  32. Liewhiran C, Phanichphant S (2007) Influence of thickness on ethanol sensing characteristics of doctor-bladed thick film from flame-made ZnO nanoparticles. Sensors 7:185–201. doi:10.3390/s7020185

    Article  CAS  Google Scholar 

  33. Hsueh T-J, Hsu C-L, Chang S-J, Chen I-C (2007) Laterally grown ZnO nanowire ethanol gas sensors. Sensors Actuators B Chem 126:473–477. doi:10.1016/j.snb.2007.03.034

    Article  CAS  Google Scholar 

  34. Faisal M, Khan SB, Rahman MM et al (2011) Role of ZnO-CeO2 nanostructures as a photo-catalyst and chemi-sensor. J Mater Sci Technol 27:594–600. doi:10.1016/S1005-0302(11)60113-8

    Article  CAS  Google Scholar 

  35. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50. doi:10.1002/smll.200500261

    Article  CAS  Google Scholar 

  36. BASU S, Y-H WANG, GHANSHYAM C, KAPUR P (2013) Fast response time alcohol gas sensor using nanocrystalline F-doped SnO2 films derived via sol–gel method. Bull Mater Sci 36:521–533. doi:10.1007/s12034-013-0493-9

    Article  CAS  Google Scholar 

  37. Chu X, Chen T, Zhang W et al (2009) Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method. Sensors Actuators B Chem 142:49–54. doi:10.1016/j.snb.2009.07.049

    Article  CAS  Google Scholar 

  38. Kohl D (1989) Surface processes in the detection of reducing gases with SnO2-based devices. Sensors Actuators 18:71–113. doi:10.1016/0250-6874(89)87026-X

    Article  CAS  Google Scholar 

  39. TAKATA M, TSUBONE D, YANAGIDA H (1976) Dependence of electrical conductivity of ZnO on degree of sintering. J Am Ceram Soc 59:4–8. doi:10.1111/j.1151-2916.1976.tb09374.x

    Article  CAS  Google Scholar 

  40. Zhang L, Zhao J, Zheng J et al (2011) Hydrothermal synthesis of hierarchical nanoparticle-decorated ZnO microdisks and the structure-enhanced acetylene sensing properties at high temperatures. Sensors Actuators B Chem 158:144–150. doi:10.1016/j.snb.2011.05.057

    Article  CAS  Google Scholar 

  41. Zhang L, Zhao J, Lu H et al (2012) Facile synthesis and ultrahigh ethanol response of hierarchically porous ZnO nanosheets. Sensors Actuators B Chem 161:209–215. doi:10.1016/j.snb.2011.10.021

    Article  CAS  Google Scholar 

  42. Di Natale C, Paolesse R, Martinelli E, Capuano R (2014) Solid-state gas sensors for breath analysis: a review. Anal Chim Acta 824:1–17. doi:10.1016/j.aca.2014.03.014

    Article  Google Scholar 

  43. BARSAN N, KOZIEJ D, WEIMAR U (2007) Metal oxide-based gas sensor research: how to? Sensors Actuators B Chem 121:18–35. doi:10.1016/j.snb.2006.09.047

    Article  CAS  Google Scholar 

  44. Shi L, Naik AJT, Goodall JBM et al (2013) Highly sensitive ZnO nanorod- and nanoprism-based NO2 gas sensors: size and shape control using a continuous hydrothermal pilot plant. Langmuir 29:10603–10609. doi:10.1021/la402339m

    Article  CAS  Google Scholar 

  45. De Souza Brito GE, Santilli CV, Pulcinelli SH (1995) Evolution of the fractal structure during sintering of SnO2 compacted sol–gel powder. Colloids Surf A Physicochem Eng Asp 97:217–225. doi:10.1016/0927-7757(95)03084-Q

    Article  Google Scholar 

  46. Bai S, Chen L, Chen S et al (2014) Reverse microemulsion in situ crystallizing growth of ZnO nanorods and application for NO2 sensor. Sensors Actuators B Chem 190:760–767. doi:10.1016/j.snb.2013.09.032

    Article  CAS  Google Scholar 

  47. Korotcenkov G, Brinzari V, Ivanov M et al (2005) Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing. Thin Solid Films 479:38–51. doi:10.1016/j.tsf.2004.11.107

    Article  CAS  Google Scholar 

  48. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2002) Size-dependent chemistry: properties of nanocrystals. Chemistry 8:28–35

    Article  CAS  Google Scholar 

  49. Rothschild A (2004) The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J Appl Phys 95:6374. doi:10.1063/1.1728314

    Article  CAS  Google Scholar 

  50. Bose AC, Thangadurai P, Ramasamy S (2006) Grain size dependent electrical studies on nanocrystalline SnO2. Mater Chem Phys 95:72–78. doi:10.1016/j.matchemphys.2005.04.058

    Article  CAS  Google Scholar 

  51. Feng P, Wan Q, Wang TH (2005) Contact-controlled sensing properties of flowerlike ZnO nanostructures. Appl Phys Lett 87:213111. doi:10.1063/1.2135391

    Article  Google Scholar 

  52. Gurlo A, Ivanovskaya M, Bârsan N et al (1997) Grain size control in nanocrystalline In2O3 semiconductor gas sensors. Sensors Actuators B Chem 44:327–333. doi:10.1016/S0925-4005(97)00199-8

    Article  Google Scholar 

  53. Baraton M-I, Merhari L (2001) Nano-metals I. Influence of the particle size on the surface reactivity and gas sensing properties of SnO2 nanopowders. Mater Trans 42:1616–1622. doi:10.2320/matertrans.42.1616

    Article  CAS  Google Scholar 

  54. Li X-L, Lou T-J, Sun X-M, Li Y-D (2004) Highly sensitive WO3 hollow-sphere gas sensors. Inorg Chem 43:5442–5449. doi:10.1021/ic049522w

    Article  CAS  Google Scholar 

  55. Moon CS, Kim H-R, Auchterlonie G et al (2008) Highly sensitive and fast responding CO sensor using SnO2 nanosheets. Sensors Actuators B Chem 131:556–564. doi:10.1016/j.snb.2007.12.040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from European Commission (ITN-Nanowiring Project, No. PITN-GA-2010-265073) and Romanian Authority for Scientific Research – UEFISCDI (grant no. PN-II-RU-PD-2012-3-0124) is acknowledged. The authors thank Politecnico di Torino for the XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Pruna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamvakos, A., Calestani, D., Tamvakos, D. et al. Effect of grain-size on the ethanol vapor sensing properties of room-temperature sputtered ZnO thin films. Microchim Acta 182, 1991–1999 (2015). https://doi.org/10.1007/s00604-015-1539-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1539-z

Keywords

Navigation