Microchimica Acta

, Volume 181, Issue 13–14, pp 1743–1748 | Cite as

Magneto-mechanical trapping systems for biological target detection

  • Fuquan LiEmail author
  • Rimantas Kodzius
  • Chinthaka P. Gooneratne
  • Ian G. Foulds
  • Jürgen Kosel
Original Paper


We demonstrate a magnetic microsystem capable of detecting nucleic acids via the size difference between bare magnetic beads and bead compounds. The bead compounds are formed through linking nonmagnetic beads and magnetic beads by the target nucleic acids. The system comprises a tunnel magneto-resistive (TMR) sensor, a trapping well, and a bead-concentrator. The TMR sensor detects the stray field of magnetic beads inside the trapping well, while the sensor output depends on the number of beads. The size of the bead compounds is larger than that of bare magnetic beads, and fewer magnetic beads are required to fill the trapping well. The bead-concentrator, in turn, is capable of filling the trap in a controlled fashion and so to shorten the assay time. The bead-concentrator includes conducting loops surrounding the trapping well and a conducting line underneath. The central conducting line serves to attract magnetic beads in the trapping well and provides a magnetic field to magnetize them so to make them detectable by the TMR sensor. This system excels by its simplicity in that the DNA is incubated with magnetic and nonmagnetic beads, and the solution is then applied to the chip and analyzed in a single step. In current experiments, a signal-to-noise ratio of 40.3 dB was obtained for a solution containing 20.8 nM of DNA. The sensitivity and applicability of this method can be controlled by the size or concentration of the nonmagnetic bead, or by the dimension of the trapping well.

If biological targets are present, they link magnetic beads and fluorescent beads. This results in less magnetic beads to be on the surface of magnetic sensor, causing a smaller signal, thus biological targets are detected.


Magnetic biosensor Magnetic beads Nucleic acid detection Trapping well 



The authors wish to thank Dr. Filipe Cardoso of INESC Microsistemas & Nanotechnologias (INESC MN) for his help with the TMR sensor fabrication. The authors wish to thank Mr. Xiang Yu of KAUST Microwave Lab for his help with the measurement setup.

Supplementary material

Online Resource 1

(MPG 13148 kb)


  1. 1.
    Baselt DR, Lee GU, Natesan M, Metzger SW, Sheehan PE, Colton RJ (1998) A biosensor based on magnetoresistance technology. Biosens Bioelectron 13:731–739. doi: 10.1016/S0956-5663(98)00037-2 CrossRefGoogle Scholar
  2. 2.
    Schotter J, Kamp PB, Becker A, Pühler A, Reiss G, Brückl H (2004) Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. Biosens Bioelectron 19(10):1149–1156. doi: 10.1016/j.bios.2003.11.007 CrossRefGoogle Scholar
  3. 3.
    Martins VC, Germano J, Cardoso FA, Loureiro J, Cardoso S, Sousa L, Piedade M, Fonseca LP, Freitas P (2010) Challenges and trends in the development of a magnetoresistive biochip portable platform. J Magn Magn Mater 322(9):1655–1663. doi: 10.1016/j.jmmm.2009.02.141 CrossRefGoogle Scholar
  4. 4.
    Cardoso F, Costa T, Germano J, Cardoso S, Borme J, Gaspar J, Fernandes J, Piedade M, Freitas P (2012) Integration of magnetoresistive biochips on a CMOS circuit. IEEE Trans Magn 48(11):3784–3787. doi: 10.1109/TMAG.2012.2198449 CrossRefGoogle Scholar
  5. 5.
    Mujika M, Arana S, Castaño E, Tijero M, Vilares R, Ruano-López JM, Cruz A, Sainz L, Berganza J (2009) Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network. Biosens Bioelectron 24(5):1253–1258. doi: 10.1016/j.bios.2008.07.024 CrossRefGoogle Scholar
  6. 6.
    Miller MM, Sheehan PE, Edelstein RL, Tamanaha CR, Zhong L, Bounnak S, Whitman LJ, Colton RJ (2001) A DNA array sensor utilizing magnetic microbeads and magnetoelectronic detection. J Magn Magn Mater 225(1–2):138–144. doi: 10.1016/s0304-8853(00)01242-7 CrossRefGoogle Scholar
  7. 7.
    Graham DL, Ferreira HA, Feliciano N, Freitas PP, Clarke LA, Amaral MD (2005) Magnetic field-assisted DNA hybridisation and simultaneous detection using micron-sized spin-valve sensors and magnetic nanoparticles. Sensors Actuators B Chem 107(2):936–944. doi: 10.1016/j.snb.2004.12.071 CrossRefGoogle Scholar
  8. 8.
    Shen W, Schrag BD, Carter MJ, Xie J, Xu C, Sun S, Xiao G (2008) Detection of DNA labeled with magnetic nanoparticles using MgO-based magnetic tunnel junction sensors. J Appl Phys 103(7):07A306. doi: 10.1063/1.2832880 Google Scholar
  9. 9.
    Xu L, Yu H, Akhras MS, Han S-J, Osterfeld S, White RL, Pourmand N, Wang SX (2008) Giant magnetoresistive biochip for DNA detection and HPV genotyping. Biosens Bioelectron 24(1):99–103. doi: 10.1016/j.bios.2008.03.030 CrossRefGoogle Scholar
  10. 10.
    Koets M, van der Wijk T, van Eemeren JTWM, van Amerongen A, Prins MWJ (2009) Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor. Biosens Bioelectron 24(7):1893–1898. doi: 10.1016/j.bios.2008.09.023 CrossRefGoogle Scholar
  11. 11.
    Martins VC, Cardoso FA, Germano J, Cardoso S, Sousa L, Piedade M, Freitas PP, Fonseca LP (2009) Femtomolar limit of detection with a magnetoresistive biochip. Biosens Bioelectron 24(8):2690–2695. doi: 10.1016/j.bios.2009.01.040 CrossRefGoogle Scholar
  12. 12.
    Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1:22–40. doi: 10.1007/s10404-004-0010-y Google Scholar
  13. 13.
    Wang S, Bae S, Li G, Sun S, White R, Kemp J, Webb C (2005) Towards a magnetic microarray for sensitive diagnostics. J Magn Magn Mater 293(1):731–736. doi: 10.1016/j.jmmm.2005.02.054 CrossRefGoogle Scholar
  14. 14.
    Giouroudi I, Kosel J (2010) Recent progress in biomedical applications of magnetic nanoparticles. Recent Patents Nanotechnol 4(2):111–118. doi: 10.2174/187221010791208795 CrossRefGoogle Scholar
  15. 15.
    Gooneratne CP, Giouroudi I, Liang C, Kosel J (2011) A giant magnetoresistance ring-sensor based microsystem for magnetic bead manipulation and detection. J Appl Phys 109(7):07E517. doi: 10.1063/1.3536822 CrossRefGoogle Scholar
  16. 16.
    Gooneratne CP, Liang C, Giouroudi I, Kosel J (2011) A magnetic particle micro-trap for large trapping surfaces. Procedia Eng 25:1201–1204. doi: 10.1016/j.proeng.2011.12.296 CrossRefGoogle Scholar
  17. 17.
    Gooneratne CP, Giouroudi I, Kosel J (2012) A planar conducting micro-loop structure for transportation of magnetic beads: an approach towards rapid sensing and quantification of biological entities. Sens Lett 10(3–4):770–774. doi: 10.1166/sl.2012.2583 CrossRefGoogle Scholar
  18. 18.
    Li F, Giouroudi I, Kosel J (2012) A biodetection method using magnetic particles and micro traps. J Appl Phys 111(7):07B328. doi: 10.1063/1.3678304 Google Scholar
  19. 19.
    Li F, Kosel J (2012) A magnetic method to concentrate and trap biological targets. IEEE Trans Magn 48(11):2854–2856. doi: 10.1109/TMAG.2012.2202644 CrossRefGoogle Scholar
  20. 20.
    Gooneratne CP, Giouroudi I, Kosel J (2013) Microdevice with half-ring shaped GMR sensors for magnetic bead manipulation and detection. In: Mukhopadhyay SC, Jayasundera KP, Fuchs A (eds) Advancement in sensing technology, vol 1. Smart sensors, measurement and instrumentation. Springer, Berlin, pp 121–138. doi: 10.1007/978-3-642-32180-1_8 Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Fuquan Li
    • 1
    Email author
  • Rimantas Kodzius
    • 1
  • Chinthaka P. Gooneratne
    • 1
  • Ian G. Foulds
    • 1
  • Jürgen Kosel
    • 1
  1. 1.Computer, Electrical and Mathematical Sciences and Engineering (CEMSE)King Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia

Personalised recommendations