Investigating Hydraulic Fracturing Complexity in Naturally Fractured Rock Masses Using Fully Coupled Multiscale Numerical Modeling
- 396 Downloads
- 2 Citations
Abstract
Naturally fractured rock mass is highly inhomogeneous and contains geological discontinuities at various length scales. Hydraulic fracture stimulation in such a medium could result in complex fracture systems instead of simple planar fractures. In this study, we carried out fully coupled multiscale numerical analysis to investigate some key coupled processes of fluid-driven fracture propagation in naturally fractured rock mass. The numerical analysis follows the concept of the synthetic rock mass (SRM) method initially developed in the discrete element method (DEM). We introduce a total of five case study examples, including fracture initiation and near wellbore tortuosity, hydraulic fracture interaction with natural fractures, multi-stage hydraulic fracturing with discrete fracture network (DFN), in-fill well fracturing and frac hits after depletion-induced stress change, and induced seismicity associated with fault reactivation. Through those case studies, we demonstrate that with an advanced numerical modeling tool, the complex fracturing associated with hydraulic fracturing in naturally fractured rock mass can be qualitatively analyzed and the extent of various uncertainties can be assessed.
Keywords
Hydraulic fracturing Naturally fractured rock mass Fracturing complexity Near wellbore tortuosity Frac hits Induced seismicityNotes
Acknowledgements
This paper was prepared based on the 2018 ARMA Early Career Keynote Lecture delivered by the first author, FZ. The authors would like to thank ARMA for the invitation of preparing this keynote paper. FZ acknowledges the financial support by the National Key R&D Program of China (2017YFC1500703), the National Natural Science Foundation of China under grant 41772286 and PetroChina Innovation Foundation under grant 2018D-5007-0202. We thank guest editor Richard Schulz and an anonymous reviewer for the insightful comments which help to improve the paper.
References
- Adachi J, Siebrits E, Peirce A, Desroches J (2007) Computer simulation of hydraulic fractures. Int J Rock Mech Min Sci 44:739–757. https://doi.org/10.1016/j.ijrmms.2006.11.006 CrossRefGoogle Scholar
- Advani SH, Torok JS, Lee JK, Choudhry S (1987) Explicit time-dependent solutions and numerical evaluations for penny-shaped hydraulic fracture models. J Geophys Res 92:8049–8055. https://doi.org/10.1029/JB092iB08p08049 CrossRefGoogle Scholar
- Advani SH, Lee TS, Lee JK (1990) Three-dimensional modeling of hydraulic fractures in layered media: part I—finite element formulations. J Energy Resour Technol 112:1–9. https://doi.org/10.1115/1.2905706 CrossRefGoogle Scholar
- Aimene YE, Ouenes A (2015) Geomechanical modeling of hydraulic fractures interacting with natural fractures—validation with microseismic and tracer data from the Marcellus and Eagle Ford. Interpretation 3:SU71–SU88. https://doi.org/10.1190/int-2014-0274.1 CrossRefGoogle Scholar
- Bahorich B, Olson JE, Holder J (2012) Examining the effect of cemented natural fractures on hydraulic fracture propagation in hydrostone block experiments. In: SPE Annual Technical Conference and ExhibitionGoogle Scholar
- Bao XW, Eaton DW (2016) Fault activation by hydraulic fracturing in western Canada. Science (80-) 354:1406–1409. https://doi.org/10.1126/science.aag2583 CrossRefGoogle Scholar
- Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129. https://doi.org/10.1016/S0065-2156(08)70121-2 CrossRefGoogle Scholar
- Bažant ZP, Salviato M, Chau VT et al (2014) Why fracking works. J Appl Mech 81:101010. https://doi.org/10.1115/1.4028192 CrossRefGoogle Scholar
- Biot M (1956) General solutions of the equation of elasticity and consolidation for a porous material. J Appl Mech 23:91–96Google Scholar
- Carrier B, Granet S (2012) Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Eng Fract Mech 79:312–328. https://doi.org/10.1016/j.engfracmech.2011.11.012 CrossRefGoogle Scholar
- Carter BJ, Desroches J, Ingraffea AR, Wawrzynek PA (2000) Simulating fully 3D hydraulic fracturing. Wiley Publishers, New YorkGoogle Scholar
- Chen Z, Bunger AP, Zhang X, Jeffrey RG (2009) Cohesive zone finite element-based modeling of hydraulic fractures. Acta Mech Solida Sin 22:443–452. https://doi.org/10.1016/S0894-9166(09)60295-0 CrossRefGoogle Scholar
- Clifton RJ, Abou-Sayed AS (1981) A variational approach to the prediction of the three-dimensional geometry of hydraulic fractures. In: SPE/DOE Low Permeability Gas Reservoirs SymposiumGoogle Scholar
- Dahi Taleghani A, Gonzalez M, Shojaei A (2016) Overview of numerical models for interactions between hydraulic fractures and natural fractures: challenges and limitations. Comput Geotech 71:361–368. https://doi.org/10.1016/j.compgeo.2015.09.009 CrossRefGoogle Scholar
- Damjanac B, Cundall P (2016) Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs. Comput Geotech 71:283–294. https://doi.org/10.1016/j.compgeo.2015.06.007 CrossRefGoogle Scholar
- Damjanac B, Cundall PA (2017) Effect of jointing and initial stress state on coupled hydro-mechanical processes in rock masses. Hydraul Fract J 4:1–18Google Scholar
- Damjanac B, Detournay C, Cundall PA (2016) Application of particle and lattice codes to simulation of hydraulic fracturing. Comput Part Mech 3:249–261. https://doi.org/10.1007/s40571-015-0085-0 CrossRefGoogle Scholar
- Davy P, Le Goc R, Darcel C et al (2010) A likely universal model of fracture scaling and its consequence for crustal hydromechanics. J Geophys Res Solid Earth 115:B10411. https://doi.org/10.1029/2009JB007043 CrossRefGoogle Scholar
- Deng JQ, Lin C, Yang Q et al (2016) Investigation of directional hydraulic fracturing based on true tri-axial experiment and finite element modeling. Comput Geotech 75:28–47. https://doi.org/10.1016/j.compgeo.2016.01.018 CrossRefGoogle Scholar
- Detournay E (2004) Propagation regimes of fluid-driven fractures in impermeable rocks. Int J Geomech 4:35–45. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:1(35) CrossRefGoogle Scholar
- Detournay E (2016) Mechanics of hydraulic fractures. Annu Rev Fluid Mech 48:311–339. https://doi.org/10.1146/annurev-fluid-010814-014736 CrossRefGoogle Scholar
- Detournay E, Cheng A (1993) Fundamentals of poroelasticity. Comprehensive rock engineering. Pergamon Press, Oxford, pp 113–169Google Scholar
- Dohmen T, Zhang J, Barker L, Blangy JP (2017) Microseismic magnitudes and b-values for delineating hydraulic fracturing and depletion. SPE J 22:1624–1634. https://doi.org/10.2118/186096-pa CrossRefGoogle Scholar
- Dontsov EV, Zhang F (2018) Calibration of tensile strength to model fracture toughness with distinct element method. Int J Solids Struct 144–145:180–191. https://doi.org/10.1016/j.ijsolstr.2018.05.001 CrossRefGoogle Scholar
- Economides M, Nolte K (2000) Reservoir stimulation, 3rd edn. Wiley, New YorkGoogle Scholar
- Ellsworth WL (2013) Injection-induced earthquakes. Science (80-) 341:142CrossRefGoogle Scholar
- Elsworth D, Spiers CJ, Niemeijer AR (2016) Understanding induced seismicity. Science (80-) 354:1380–1381CrossRefGoogle Scholar
- Fairhurst C (2013) Fractures and fracturing: hydraulic fracturing in jointed rock. Effective and sustainable hydraulic fracturing. International Society for Rock Mechanics and Rock Engineering, Brisbane, pp 47–79Google Scholar
- Fu W, Ames BC, Bunger AP, Savitski AA (2016) Impact of partially cemented and non-persistent natural fractures on hydraulic hracture propagation. Rock Mech Rock Eng 49:4519–4526. https://doi.org/10.1007/s00603-016-1103-0 CrossRefGoogle Scholar
- Gale JFW, Reed RM, Holder J (2007) Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. Am Assoc Pet Geol Bull 91:603–622. https://doi.org/10.1306/11010606061 CrossRefGoogle Scholar
- Gale JFW, Laubach SE, Olson JE et al (2014) Natural fractures in shale: a review and new observations. Am Assoc Pet Geol Bull 98:2165–2216. https://doi.org/10.1306/08121413151 CrossRefGoogle Scholar
- Geertsma J, Haafkens R (1979) A comparison of the theories for predicting width and extent of vertical hydraulically induced fractures. J Energy Resour Technol 101:8–19. https://doi.org/10.1115/1.3446866 CrossRefGoogle Scholar
- Gordeliy E, Peirce A (2013) Coupling schemes for modeling hydraulic fracture propagation using the XFEM. Comput Methods Appl Mech Eng 253:305–322. https://doi.org/10.1016/j.cma.2012.08.017 CrossRefGoogle Scholar
- Gu H, Weng X, Lund JB et al (2012) Hydraulic fracture crossing natural fracture at nonorthogonal angles: a criterion and its validation. SPE Prod Oper 27:20–26. https://doi.org/10.2118/139984-PA CrossRefGoogle Scholar
- Guo X, Wu K, Killough J (2018) Investigation of production-induced stress changes for infill-well stimulation in Eagle Ford shale. SPE J 23:1–17. https://doi.org/10.2118/189974-PA CrossRefGoogle Scholar
- Gutenberg B, Richter CF (1942) Earthquake magnitude, intensity, energy, and acceleration. Bull Seismol Soc 32:163–191Google Scholar
- Haddad M, Sepehrnoori K (2016) XFEM-based CZM for the simulation of 3D multiple-cluster hydraulic fracturing in quasi-brittle shale formations. Rock Mech Rock Eng 49:4731–4748. https://doi.org/10.1007/s00603-016-1057-2 CrossRefGoogle Scholar
- Haddad M, Seperhrnoori K (2015) Simulation of hydraulic fracturing in quasi-brittle shale formations using characterized cohesive layer: stimulation controlling factors. J Unconv Oil Gas Resour 9:65–83. https://doi.org/10.1016/j.juogr.2014.10.001 CrossRefGoogle Scholar
- Haddad M, Du J, Vidal-Gilbert S (2017) Integration of dynamic microseismic data with a true 3D modeling of hydraulic-fracture propagation in the Vaca Muerta shale. SPE J 22:1714–1738. https://doi.org/10.2118/179164-pa CrossRefGoogle Scholar
- Hou B, Zhang R, Zeng Y et al (2018) Analysis of hydraulic fracture initiation and propagation in deep shale formation with high horizontal stress difference. J Pet Sci Eng 170:231–243. https://doi.org/10.1016/j.petrol.2018.06.060 CrossRefGoogle Scholar
- Howard G, Fast CR (1957) Optimum fluid characteristics for fracture extension. Proc Am Pet Inst 261–270Google Scholar
- Hubbert MK, Willis DG (1957) Mechanics of hydraulic fracturing. Pet Trans AIME 210:153–168Google Scholar
- Jackson RB, Vengosh A, Carey JW et al (2014) The environmental costs and benefits of fracking. In: Gadgil A, Liverman DM (eds) Annual review of environment and resources, annual reviews, vol 39. Palo Alto, California, pp 327–362Google Scholar
- Jeffrey RG, Bunger A, LeCampion B, et al (2009) Measuring hydraulic fracture growth in naturally fractured rock. In: SPE Annual Technical Conference and ExhibitionGoogle Scholar
- Khristianovic SA, Zheltov YP (1955) Formation of vertical fractures by means of highly viscous liquid. 4th World Pet. CongrGoogle Scholar
- King GE (2010) Thirty years of gas shale fracturing: what have we learned?. SPE Annu Tech Conf, ExhibGoogle Scholar
- Kresse O, Weng X, Gu H, Wu R (2013) Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations. Rock Mech Rock Eng 46:555–568. https://doi.org/10.1007/s00603-012-0359-2 CrossRefGoogle Scholar
- Lecampion B (2009) An extended finite element method for hydraulic fracture problems. Commun Numer Methods Eng 25:121–133. https://doi.org/10.1002/cnm.1111 CrossRefGoogle Scholar
- Lecampion B, Bunger A, Zhang X (2018) Numerical methods for hydraulic fracture propagation: a review of recent trends. J Nat Gas Sci Eng 49:66–83. https://doi.org/10.1016/j.jngse.2017.10.012 CrossRefGoogle Scholar
- Lee B, Mack M, Maxwell S (2016) Completion optimization using a microseismically calibrated geomechanical hydraulic fracturing simulation in a naturally fractured formation. In: 50th US Rock Mechanics/Geomechanics SymposiumGoogle Scholar
- Li Q, Xing H, Liu J, Liu X (2015) A review on hydraulic fracturing of unconventional reservoir. Petroleum 1:8–15. https://doi.org/10.1016/j.petlm.2015.03.008 CrossRefGoogle Scholar
- Lisjak A, Kaifosh P, He L et al (2017) A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses. Comput Geotech 81:1–18. https://doi.org/10.1016/j.compgeo.2016.07.009 CrossRefGoogle Scholar
- Ma X, Zoback MD (2017) Lithology-controlled stress variations and pad-scale faults: a case study of hydraulic fracturing in the Woodford Shale, Oklahoma. Geophysics 82:ID35–ID44. https://doi.org/10.1190/geo2017-0044.1 CrossRefGoogle Scholar
- Mack M, Zhang F, Lee BT et al (2016) Geomechanical modeling of microseismic depletion delineation. SEG Tech Progr Expand Abstr 2016:3006–3010Google Scholar
- Mas Ivars D, Pierce ME, Darcel C et al (2011) The synthetic rock mass approach for jointed rock mass modelling. Int J Rock Mech Min Sci 48:219–244. https://doi.org/10.1016/j.ijrmms.2010.11.014 CrossRefGoogle Scholar
- Maxwell S (2014) Microseismic imaging of hydraulic fracturing: improved engineering of unconventional shale reservoirs. Society of Exploration GeophysicistsGoogle Scholar
- Maxwell S, Cipolla C (2011) What does microseismicity tell us about hydraulic fracturing? SPE Annu Tech Conf ExhibGoogle Scholar
- Maxwell S, Chorney D, Grob M (2015a) Differentiating wet and dry microseismic events induced during hydraulic fracturing. In: Unconventional Resources Technology ConferenceGoogle Scholar
- Maxwell SC, Chorney D, Goodfellow SD (2015b) Microseismic geomechanics of hydraulic-fracture networks: insights into mechanisms of microseismic sources. Lead Edge 34:904–910. https://doi.org/10.1190/tle34080904.1 CrossRefGoogle Scholar
- Maxwell SC, Zhang F, Damjanac B (2015c) Geomechanical modeling of induced seismicity resulting from hydraulic fracturing. Lead Edge 34:678–683. https://doi.org/10.1190/tle34060678.1 CrossRefGoogle Scholar
- Maxwell SC, Lee BT, Mack M (2016) Calibrated microseismic geomechanical modeling of a Horn River basin hydraulic fracture. In: 50th US Rock Mechanics/Geomechanics SymposiumGoogle Scholar
- McGarr A (2014) Maximum magnitude earthquakes induced by fluid injection. J Geophys Res Earth 119:1008–1019. https://doi.org/10.1002/2013jb010597 CrossRefGoogle Scholar
- Miehe C, Mauthe S (2016) Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media. Comput Methods Appl Mech Eng 304:619–655. https://doi.org/10.1016/j.cma.2015.09.021 CrossRefGoogle Scholar
- Mikelić A, Wheeler MF, Wick T (2015) Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput Geosci 19:1171–1195. https://doi.org/10.1007/s10596-015-9532-5 CrossRefGoogle Scholar
- Nagel NB, Sanchez-Nagel MA, Zhang F et al (2013) Coupled numerical evaluations of the geomechanical interactions between a hydraulic fracture stimulation and a natural fracture system in shale formations. Rock Mech Rock Eng 46:581–609. https://doi.org/10.1007/s00603-013-0391-x CrossRefGoogle Scholar
- Nordgren RP (1972) Propagation of a vertical hydraulic fracture. Soc Pet Eng J 12:306–314. https://doi.org/10.2118/3009-PA CrossRefGoogle Scholar
- Ouchi H, Katiyar A, Foster J, Sharma M (2015) A peridynamics model for the propagation of hydraulic fractures in heterogeneous, naturally fractured reservoirs. In: SPE Hydraulic Fracturing Technology ConferenceGoogle Scholar
- Perkins TK, Kern LR (1961) Widths of hydraulic fractures. J Pet Technol. https://doi.org/10.2118/89-pa CrossRefGoogle Scholar
- Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011 CrossRefGoogle Scholar
- Profit M, Dutko M, Yu J et al (2016) Complementary hydro-mechanical coupled finite/discrete element and microseismic modelling to predict hydraulic fracture propagation in tight shale reservoirs. Comput Part Mech 3:229–248. https://doi.org/10.1007/s40571-015-0081-4 CrossRefGoogle Scholar
- Renshaw CE, Pollard DD (1995) An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic materials. Int J Rock Mech Min Sci Geomech Abstr 32:237–249. https://doi.org/10.1016/0148-9062(94)00037-4 CrossRefGoogle Scholar
- Roussel NP, Florez H, Rodriguez AA (2013) Hydraulic fracture propagation from infill horizontal wells. In: SPE Annual Technical Conference and ExhibitionGoogle Scholar
- Rubinstein JL, Ellsworth WL, Dougherty SL (2018) The 2013-2016 induced earthquakes in Harper and Sumner counties, southern Kansas. Bull Seismol Soc Am 108:674–689. https://doi.org/10.1785/0120170209 CrossRefGoogle Scholar
- Safari R, Lewis R, Ma X et al (2017) Infill-well fracturing optimization in tightly spaced horizontal wells. SPE J 22:582–595. https://doi.org/10.2118/178513-PA CrossRefGoogle Scholar
- Siebrits E, Peirce AP (2002) A efficient multi-layer planar 3D fracture growth algorithm using a fixed mesh approach. Int J Numer Methods Eng 53:691–717. https://doi.org/10.1002/nme.308 CrossRefGoogle Scholar
- Singh V, Roussel NP, Sharma MM (2008) Stress reorientation and fracture treatments in horizontal wells. SPE Annu Tech Conf ExhibGoogle Scholar
- Snelling PE, de Groot M (2014) The effects of faults and fractures on microseismic in Horn River basin shales. In: CSEG GeoConvention 2014Google Scholar
- Starfield AM, Cundall PA (1988) Towards a methodology for rock mechanics modelling. Int J Rock Mech Min Sci 25:99–106. https://doi.org/10.1016/0148-9062(88)92292-9 CrossRefGoogle Scholar
- Tang J, Wu K (2018) A 3-D model for simulation of weak interface slippage for fracture height containment in shale reservoirs. Int J Solids Struct 144–145:248–264. https://doi.org/10.1016/j.ijsolstr.2018.05.007 CrossRefGoogle Scholar
- Tang J, Wu K, Li Y et al (2018) Numerical investigation of the interactions between hydraulic fracture and bedding planes with non-orthogonal approach angle. Eng Fract Mech 200:1–16. https://doi.org/10.1016/j.engfracmech.2018.07.010 CrossRefGoogle Scholar
- van der Elst NJ, Savage HM, Keranen KM, Abers GA (2013) Enhanced remote earthquake triggering at fluid-injection sites in the Midwestern United States. Science (80-) 341:164–167. https://doi.org/10.1126/science.1238948 CrossRefGoogle Scholar
- Wang T, Zhou W, Chen J et al (2014) Simulation of hydraulic fracturing using particle flow method and application in a coal mine. Int J Coal Geol 121:1–13. https://doi.org/10.1016/j.coal.2013.10.012 CrossRefGoogle Scholar
- Warpinski NR, Teufel LW (1987) Influence of geologic discontinuities on hydraulic fracture propagation. J Pet Technol. https://doi.org/10.2118/13224-pa CrossRefGoogle Scholar
- Warpinski NR, Mayerhofer M, Agarwal K, Du J (2013) Hydraulic-fracture geomechanics and microseismic-source mechanisms. SPE J. https://doi.org/10.2118/158935-pa CrossRefGoogle Scholar
- Weng X (2015) Modeling of complex hydraulic fractures in naturally fractured formation. J Unconv Oil Gas Resour 9:114–135. https://doi.org/10.1016/j.juogr.2014.07.001 CrossRefGoogle Scholar
- Wileveau Y, Cornet FH, Desroches J, Blumling P (2007) Complete in situ stress determination in an argillite sedimentary formation. Phys Chem Earth 32:866–878. https://doi.org/10.1016/j.pce.2006.03.018 CrossRefGoogle Scholar
- Wu K, Olson JE (2015) Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horizontal wells. SPE J 20:337–342. https://doi.org/10.2118/167626-PA CrossRefGoogle Scholar
- Zhang F, Dontsov E (2018) Modeling hydraulic fracture propagation and proppant transport in a two-layer formation with stress drop. Eng Fract Mech 199:705–720. https://doi.org/10.1016/j.engfracmech.2018.07.008 CrossRefGoogle Scholar
- Zhang F, Mack M (2016) Modeling of hydraulic fracture initiation from perforation Tunnels using the 3D lattice method. In: 50th US Rock Mechanics/Geomechanics Symposium 2016. American Rock Mechanics AssociationGoogle Scholar
- Zhang F, Mack M (2017) Integrating fully coupled geomechanical modeling with microsesmicity for the analysis of refracturing treatment. J Nat Gas Sci Eng 46:16–25. https://doi.org/10.1016/j.jngse.2017.07.008 CrossRefGoogle Scholar
- Zhang X, Jeffrey RG, Thiercelin M (2007) Deflection and propagation of fluid-driven fractures at frictional bedding interfaces: a numerical investigation. J Struct Geol 29:396–410. https://doi.org/10.1016/j.jsg.2006.09.013 CrossRefGoogle Scholar
- Zhang F, Damjanac B, Huang H (2013a) Coupled discrete element modeling of fluid injection into dense granular media. J Geophys Res Solid Earth 118:1–20. https://doi.org/10.1002/jgrb.50204 CrossRefGoogle Scholar
- Zhang F, Nagel N, Lee B, Sanchez-Nagel M (2013b) The influence of fracture network connectivity on hydraulic fracture effectiveness and microseismicity generation. In: 47th US Rock Mechanics/Geomechanics Symposium 2013Google Scholar
- Zhang F, Maxwell S, Damjanac B (2015) Modeling of fault activation induced by hydraulic fracturing—a Horn River basin case study. Hydraul Fract J 2:26–33Google Scholar
- Zhang F, Dontsov E, Mack M (2017) Fully coupled simulation of a hydraulic fracture interacting with natural fractures with a hybrid discrete-continuum method. Int J Numer Anal Methods Geomech 41:1430–1452. https://doi.org/10.1002/nag.2682 CrossRefGoogle Scholar
- Zhang R, Hou B, Shan Q et al (2018) Hydraulic fracturing initiation and near-wellbore nonplanar propagation from horizontal perforated boreholes in tight formation. J Nat Gas Sci Eng 55:337–349. https://doi.org/10.1016/j.jngse.2018.05.021 CrossRefGoogle Scholar
- Zhou J, Zhang L, Pan Z, Han Z (2016) Numerical investigation of fluid-driven near-borehole fracture propagation in laminated reservoir rock using PFC2D. J Nat Gas Sci Eng 36:719–733. https://doi.org/10.1016/j.jngse.2016.11.010 CrossRefGoogle Scholar
- Zhu H, Shen J, Zhang F (2019) A fracture conductivity model for channel fracturing and its implementation with discrete element method. J Pet Sci Eng 172:149–161. https://doi.org/10.1016/j.petrol.2018.09.054 CrossRefGoogle Scholar