Advertisement

Rock Mechanics and Rock Engineering

, Volume 52, Issue 1, pp 19–34 | Cite as

Comparison of the Uniaxial Compressive Strength of the Belencito Claystone Under Stress Control and Suction Control Paths

  • Jairo Martin Espitia
  • Bernardo CaicedoEmail author
  • Luis Vallejo
Original Paper
  • 196 Downloads

Abstract

The uniaxial compressive strength of Belencito claystone was studied through stress control and suction control path tests. Short-term uniaxial compression tests on conditioned specimens at different values of suction and long-term hydro-mechanical tests using a climatic box were performed. Volumetric deformation data and acoustic emission measurements from the short-term tests were used to determine σCD (crack damage stress threshold). Regardless of the level of suction, the σCD threshold occurred between 70 and 83% of the σpeak.short-term. The experimental results confirmed that the interpretation made by Brace and Bombolakis (J Geophys Res 68:3709–3713, 1963) and Bieniawski (Int J Rock Mech Min Sci 4:395–406, 1967) regarding long-term and short-term rock strength remains valid when considering the hydro-mechanical behaviour.

Keywords

Claystone Unsaturated rock Suction Uniaxial compression Long-term rock strength Short-term rock strength 

Notes

Acknowledgements

The authors are grateful to COLCIENCIAS (Departamento Administrativo de Ciencia, Tecnología e Innovación: the Colombian Administrative Department of Science, Technology and Innovation) and the Universidad Pedagógica y Tecnológica de Colombia which provided financial support for this research through the Ph.D. thesis of the first author.

References

  1. Amann F, Button EA, Evans KF, Gischig VS, Blümel M (2011) Experimental study of the brittle behavior of clay shale in rapid unconfined compression. Rock Mech Rock Eng 44(4):415–430CrossRefGoogle Scholar
  2. ANM C (2014) Accident statistics. Colombian National Mining Agency, ColombiaGoogle Scholar
  3. ASTM (2012) Standard practice for maintaining constant relative humidity by means of aqueous solutions. ASTM, West ConshohockenGoogle Scholar
  4. Bieniawski ZT (1967) Mechanism of brittle rock fracture. Part I. Theory of the fracture process. Int J Rock Mech Min Sci 4:395–406CrossRefGoogle Scholar
  5. Brace WF, Bombolakis EG (1963) A note on brittle crack growth in compression. J Geophys Res 68:3709–3713CrossRefGoogle Scholar
  6. Brace WF, Paulding BW, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71:3939–3953.  https://doi.org/10.1029/JZ071i016p03939 CrossRefGoogle Scholar
  7. Delage P, Romero E, Tarantino A (2008) Recent developments in the techniques of controlling and measuring suction in unsaturated soils. In: Paper presented at the 1st European conference on unsaturated soils, Durham, United KingdomGoogle Scholar
  8. Diederichs MS, Martin CD (2010) Measurement of spalling parameters from laboratory testing. In: Paper presented at the EUROCK2010, ISRM, LondonGoogle Scholar
  9. Diederichs MS, Kaiser PK, Eberhardt E (2004) Damage initiation and propagation in hard rock tunnelling and the influence of near-face stress rotation. Int J Rock Mech Min Sci 41:785–812CrossRefGoogle Scholar
  10. Eberhardt E, Stead D, Stimpson B, Read RS (1998) Identifying crack initiation and propagation thresholds in brittle rock. Can Geotech J 35:222–233CrossRefGoogle Scholar
  11. Espitia JM, Caicedo B, Vallejo L (2016) Experimental study of the hydro-mechanical behaviour of unsaturated argillaceous rocks. E3S Web Conf 9:14007CrossRefGoogle Scholar
  12. Espitia JM, Caicedo B, Vallejo L (2017) Effect of suction and stress on Poisson’s ratio of argillaceous rocks. Geotech Lett 7:53–59.  https://doi.org/10.1680/jgele.16.00138 CrossRefGoogle Scholar
  13. Hardy HRJ (1972) Application of acoustic emission techniques to rock mechanics research. In: Acoustic emission, ASTM STP 505. American Society for Testing and Materials, Bal Harbour, pp 41–83CrossRefGoogle Scholar
  14. Helal H, Homand-Etienne F, Josien JP (1988) Validity of uniaxial compression tests for indirect determination of long term strength of rocks. Int J Min Geol Eng 6:249–257.  https://doi.org/10.1007/BF00880976 CrossRefGoogle Scholar
  15. Liu Z, Shao J (2016) Moisture effects on damage and failure of Bure claystone under compression. Geotech Lett 6:182–186.  https://doi.org/10.1680/jgele.16.00054 CrossRefGoogle Scholar
  16. Lobo-Guerrero A (1998) Los Derrumbes Ocurridos Durante 1997 en Túneles del Acueducto de Chingaza. In: Paper presented at the VII Congreso Colombiano de Geotecnia, BogotáGoogle Scholar
  17. Martin CD (1997) Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength. Can Geotech J 34:698–725CrossRefGoogle Scholar
  18. Martin CD, Chandler NA (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomechan Abstr 31:643–659.  https://doi.org/10.1016/0148-9062(94)90005-1 CrossRefGoogle Scholar
  19. Marulanda A, Marulanda C, Gutiérrez R (2008) Experiences in tunnel excavation by the conventional method and by use TBMs in the Andes Mountain Range. Case histories. In: Paper presented at the first South American symposium on rock excavations, Bogot&#225Google Scholar
  20. Menaceur H, Delage P, Tang AM, Talandier J (2016) The status of water in swelling shales: an insight from the water retention properties of the Callovo–Oxfordian claystone rock. Mech Rock Eng 49:4571–4586.  https://doi.org/10.1007/s00603-016-1065-2 CrossRefGoogle Scholar
  21. Minardi A, Crisci E, Ferrari A, Laloui L (2016) Anisotropic volumetric behaviour of Opalinus clay shale upon suction variation. Geotech Lett 6:1–5.  https://doi.org/10.1680/jgele.16.00023 CrossRefGoogle Scholar
  22. Pham QT, Vales F, Malinsky L, Nguyen Minh D, Gharbi H (2007) Effects of desaturation–resaturation on mudstone. Phys Chem Earth Parts A/B/C 32:646–655CrossRefGoogle Scholar
  23. Pineda JA, Alonso EE, Romero E (2014) Environmental degradation of claystones. Geotechnique 64:64–82CrossRefGoogle Scholar
  24. Pintado X, Lloret A, Romero E (2009) Assessment of the use of the vapour equilibrium technique in controlled-suction tests. Can Geotech J 46:411–423.  https://doi.org/10.1139/T08-130 CrossRefGoogle Scholar
  25. Púa L (2017) Influencia de la humedad y la succión en las propiedades eléctricas de muestras parcialmente saturadas de lodo arcilloso. Universidad de Los Andes, BogotáGoogle Scholar
  26. Ramos da Silva M, Schroeder C, Verbrugge J-C (2008) Unsaturated rock mechanics applied to a low-porosity shale. Eng Geol 97:42–52.  https://doi.org/10.1016/j.enggeo.2007.12.003 CrossRefGoogle Scholar
  27. Rojas JC, Gallipoli D, Wheeler SJ (2012) Image analysis of strains in soils subjected to wetting and drying. Geotech Test J 35:60–73Google Scholar
  28. Scholz CH (1968a) Experimental study of the fracturing process in brittle rock. J Geophys Res 73:1447–1454.  https://doi.org/10.1029/JB073i004p01447 CrossRefGoogle Scholar
  29. Scholz CH (1968b) Microfracturing and the inelastic deformation of rock in compression. J Geophys Res 73:1417–1432.  https://doi.org/10.1029/JB073i004p01417 CrossRefGoogle Scholar
  30. Tang CA, Hudson JA (2010) Rock failure mechanisms: illustrated and explained. CRC Press, Boca RatonGoogle Scholar
  31. Valès F, Nguyen Minh D, Gharbi H, Rejeb A (2004) Experimental study of the influence of the degree of saturation on physical and mechanical properties in Tournemire shale (France). Appl Clay Sci 26:197–207.  https://doi.org/10.1016/j.clay.2003.12.032 CrossRefGoogle Scholar
  32. Valès F, Bornert M, Gharbi H, Minh DN, Eytard JC (2007) Micromechanical investigations of the hydro-mechanical behaviour of argillite rocks by means of optical full field strain measurement and acoustic emission techniques. In: 11th ISRM congress. International Society for Rock MechanicsGoogle Scholar
  33. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  34. Wan M, Delage P, Tang AM, Talandier J (2013) Water retention properties of the Callovo–Oxfordian claystone. Int J Rock Mech Min Sci 64:96–104.  https://doi.org/10.1016/j.ijrmms.2013.08.020 CrossRefGoogle Scholar
  35. Wang LL, Bornert M, Héripré E, Yang DS, Chanchole S (2014) Irreversible deformation and damage in argillaceous rocks induced by wetting/drying. J Appl Geophys 107:108–118.  https://doi.org/10.1016/j.jappgeo.2014.05.015 CrossRefGoogle Scholar
  36. Wang L, Bornert M, Héripré E, Chanchole S, Pouya A, Halphen B (2015a) Microscale insight into the influence of humidity on the mechanical behaviour of mudstones. J Geophys Res B Solid Earth 120:3173–3186.  https://doi.org/10.1002/2015JB011953 CrossRefGoogle Scholar
  37. Wang LL, Bornert M, Héripré E, Chanchole S, Pouya A, Halphen B (2015b) The mechanisms of deformation and damage of mudstones: a micro-scale study combining ESEM and DIC rock. Mech Rock Eng 48:1913–1926.  https://doi.org/10.1007/s00603-014-0670-1 CrossRefGoogle Scholar
  38. Wang LL et al (2015c) Microstructural insight into the nonlinear swelling of argillaceous rocks. Eng Geol 193:435–444.  https://doi.org/10.1016/j.enggeo.2015.05.019 CrossRefGoogle Scholar
  39. Wild KM, Wymann LP, Zimmer S, Thoeny R, Amann F (2014) Water retention characteristics and state-dependent mechanical and petro-physical properties of a clay shale rock. Mech Rock Eng 48:427–439.  https://doi.org/10.1007/s00603-014-0565-1 CrossRefGoogle Scholar
  40. Yang D, Bornert M, Chanchole S, Wang L, Valli P, Gatmiri B (2011) Experimental investigation of the delayed behaviour of unsaturated argillaceous rocks by means of Digital Image Correlation techniques. Appl Clay Sci 54:53–62.  https://doi.org/10.1016/j.clay.2011.07.012 CrossRefGoogle Scholar
  41. Yang DS, Bornert M, Chanchole S, Gharbi H, Valli P, Gatmiri B (2012) Dependence of elastic properties of argillaceous rocks on moisture content investigated with optical full-field strain measurement techniques. Int J Rock Mech Min Sci 53:45–55.  https://doi.org/10.1016/j.ijrmms.2012.04.004 CrossRefGoogle Scholar
  42. Yang D, Chanchole S, Valli P, Chen L (2013) Study of the anisotropic properties of argillite under moisture and mechanical loads rock. Mech Rock Eng 46:247–257.  https://doi.org/10.1007/s00603-012-0267-5 CrossRefGoogle Scholar
  43. Zhang C-L (2015) Deformation of clay rock under THM conditions. Geomech Tunn 8:426–435.  https://doi.org/10.1002/geot.201500025 CrossRefGoogle Scholar
  44. Zhang C, Rothfuchs T (2004) Experimental study of the hydro-mechanical behaviour of the Callovo–Oxfordian argillite. Appl Clay Sci 26:325–336.  https://doi.org/10.1016/j.clay.2003.12.025 CrossRefGoogle Scholar
  45. Zhang C-L, Rothfuchs T, Su K, Hoteit N (2007) Experimental study of the thermo-hydro-mechanical behaviour of indurated clays. Phys Chem Earth Parts A/B/C 32:957–965.  https://doi.org/10.1016/j.pce.2006.04.038 CrossRefGoogle Scholar
  46. Zhang CL, Wieczorek K, Xie ML (2010) Swelling experiments on mudstones. J Rock Mech Geotech Eng 2:44–51.  https://doi.org/10.3724/SP.J.1235.2010.00044 CrossRefGoogle Scholar
  47. Zhang F, Xie SY, Hu DW, Shao JF, Gatmiri B (2012) Effect of water content and structural anisotropy on mechanical property of claystone. Appl Clay Sci 69:79–86.  https://doi.org/10.1016/j.clay.2012.09.024 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of Los AndesBogotáColombia
  2. 2.Department of Mining EngineeringUniversidad Pedagógica y Tecnológica de ColombiaSogamosoColombia
  3. 3.Department of Civil and Environmental EngineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations