Advertisement

Few-Body Systems

, 60:65 | Cite as

Relativistic Spin-0 Feshbach–Villars Equations for Polynomial Potentials

  • B. M. Motamedi
  • T. N. Shannon
  • Z. PappEmail author
Article
  • 26 Downloads

Abstract

We propose a solution method for studying relativistic spin-0 particles. We adopt the Feshbach–Villars formalism of the Klein–Gordon equation and express the formalism in an integral equation form. The integral equation is represented in the Coulomb–Sturmian basis. The corresponding Green’s operator with Coulomb and linear confinement potential can be calculated as a matrix continued fraction. We consider Coulomb plus short range vector potential for bound and resonant states and linear confining scalar potentials for bound states. The continued fraction is naturally divergent at resonant state energies, but we made it convergent by an appropriate analytic continuation.

Notes

References

  1. 1.
    H. Feshbach, F. Villars, Rev. Mod. Phys. 30, 24 (1958)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    M.G. Fuda, Phys. Rev. C 21(4), 1480 (1980)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    J.L. Friar, Z. Phys. A At. Nucl. 297(2), 147 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    M.G. Fuda, Phys. Rev. C 24(2), 614 (1981)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Merad, L. Chetouani, A. Bounames, Phys. Lett. A 267(4), 225 (2000)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    K. Khounfais, T. Boudjedaa, L. Chetouani, Czech J. Phys. 54(7), 697 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    A. Bounames, L. Chetouani, Phys. Lett. A 279(3–4), 139 (2001)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Horbatsch, D.V. Shapoval, Phys. Rev. A 51(3), 1804 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    N.C. Brown, Z. Papp, R. Woodhouse, Few-Body Syst. 57(2), 103 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    A. Wachter, Relativistic Quantum Mechanics (Springer, Berlin, 2010)zbMATHGoogle Scholar
  11. 11.
    N.C. Brown, S.E. Grefe, Z. Papp, Phys. Rev. C 88(4), 047001 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    B. Konya, G. Levai, Z. Papp, J. Math. Phys. 38, 4832 (1997)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    F. Demir, Z.T. Hlousek, Z. Papp, Phys. Rev. A 74, 014701 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    E. Kelbert, A. Hyder, F. Demir, Z.T. Hlousek, Z. Papp, J. Phys. A Math. Theor. 40(27), 7721 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyCalifornia State University Long BeachLong BeachUSA

Personalised recommendations