Few-Body Systems

, 60:64 | Cite as

Tests of the Envelope Theory in One Dimension

  • Claude SemayEmail author
  • Lorenzo Cimino


The envelope theory is a simple technique to obtain approximate, but reliable, solutions of many-body systems with identical particles. The accuracy of this method is tested here for two systems in one dimension with pairwise forces. The first one is the fermionic ground state of the analytical Calogero model with linear forces supplemented by inverse-cube forces. The second one is the ground state of up to 100 bosons interacting via a Gaussian potential. Good bounds can be obtained depending on values of the model parameters.



  1. 1.
    R.L. Hall, Energy trajectories for the \(N\)-boson problem by the method of potential envelopes. Phys. Rev. D 22, 2062 (1980)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    R.L. Hall, A geometrical theory of energy trajectories in quantum mechanics. J. Math. Phys. 24, 324 (1983)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    R.L. Hall, W. Lucha, F.F. Schöberl, Relativistic \(N\)-boson systems bound by pair potentials \(V(r_{ij}) = g(r^2_{ij})\). J. Math. Phys. 45, 3086 (2004)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    C. Semay, C. Roland, Approximate solutions for \(N\)-body Hamiltonians with identical particles in \(D\) dimensions. Res. Phys. 3, 231 (2013)Google Scholar
  5. 5.
    C. Semay, F. Buisseret, Bound cyclic systems with the envelope theory. Few-Body Syst. 58, 151 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    C. Semay, G. Sicorello, Many-body forces with the envelope theory. Few-Body Syst. 59, 119 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    C. Semay, Numerical tests of the envelope theory for few-boson systems. Few-Body Syst. 56, 149 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    C. Semay, Improvement of the envelope theory with the dominantly orbital state method. Eur. Phys. J. Plus 130, 156 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Lévy-Leblond, Generalized uncertainty relations for many-fermion system. Phys. Lett. A 26, 540 (1968)ADSCrossRefGoogle Scholar
  10. 10.
    F. Calogero, Ground state of a one-dimensional \(N\)-body system. J. Math. Phys. 10, 2197 (1969)ADSCrossRefGoogle Scholar
  11. 11.
    N.K. Timofeyuk, D. Baye, Hyperspherical harmonics expansion on Lagrange meshes for bosonic systems in one dimension. Few-Body Syst. 58, 157 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    D. Baye, The Lagrange-mesh method. Phys. Rep. 565, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, On the Lambert \(W\) function. Adv. Comput. Math. 5, 329 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Service de Physique Nucléaire et Subnucléaire, UMONS Research Institute for Complex SystemsUniversité de MonsMonsBelgium

Personalised recommendations