Advertisement

Few-Body Systems

, 60:66 | Cite as

Trigonometric Rosen–Morse Potential as a Quark–Antiquark Interaction Potential for Meson Properties in the Non-relativistic Quark Model Using EAIM

  • M. Abu-ShadyEmail author
  • Sh. Y. Ezz-Alarab
Article
  • 14 Downloads

Abstract

Trigonometric Rosen–Morse potential is suggested as a quark–antiquark interaction potential for studying thermodynamic properties and masses of heavy and heavy–light mesons. For this purpose, the N-radial Schrödinger equation is analytically solved using an exact-analytical iteration method. The energy eigenvalues and corresponding wave functions are obtained in the N-space. The present results are applied in calculating the mass of mesons such as charmonium c \({\bar{\hbox {c}}}\), bottomonium b \({\bar{\hbox {b}}}\), b \( {\bar{\hbox {c}}}, \) and c \({\bar{\hbox {s}}}\) mesons and thermodynamic properties such as the mean internal energy, the specific heat, the free energy, and the entropy. The effect of dimensional number is studied on the meson properties. The present results are improved in comparison with other recent works and are in good agreement in comparison with experimental data. Thus, the present potential provides satisfied results in comparison with other works and experimental data.

Notes

References

  1. 1.
    A.N. Ikot, B.C. Lutfuoglu, M.I. Ngwueke, M.E. Udoh, S. Zare, H. Hassan, Eur. Phys. J. Plus 131, 419 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Abu-Shady, T.A. Abdel-Karim, S.Y. Ezz-Alarab, J. Egypt. Math. Soc. 27, 14 (2019)Google Scholar
  3. 3.
    A. Suparmi, C. Cari, A.S. Husein, H. Yulian, I.K.A. Khaled, H. Luqman, E. Supriyanto, in 4th International Conference on Advanced Nuclear Science Engineering, vol. 1615, pp. 121–127 (2014)Google Scholar
  4. 4.
    H. Ciftci, R.L. Hall, N. Saad, J. Phys. A 38, 1147 (2005)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    F.M. Fernández, J. Phys. A 37, 6173 (2004)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    T. Barak, K. Abod, O.M. Al-Doss, Czechov. J. Phys. 56, 6 (2006)Google Scholar
  7. 7.
    A. Arda, C. Tezcan, R. Sever, Few Body Syst. 57, 101 (2016)CrossRefADSGoogle Scholar
  8. 8.
    C.B.C. Jasso, M. Kirchbach, A.I.P. Conf, AIP Conf. Proc. 857, 275–278 (2006)CrossRefADSGoogle Scholar
  9. 9.
    C.B.C. Jasso, M. Kirchbach, J. Phys. A Math. Gen. 39, 547 (2006)CrossRefGoogle Scholar
  10. 10.
    S. Sharma, Hindawi Publ. Corp. 452978, 26 (2013)Google Scholar
  11. 11.
    C.V. Sukumar, J. Phys. A Math. Gen. 18, 2917 (1998); AIP Proceedings 744, eds. R. Bijker et al, Supersymmetries in Physics and Applications, 167 (New York, 2005)Google Scholar
  12. 12.
    F. Cooper, A. Khare, U.P. Sukhat, Super Symmetry Quantum Mechanics (World Scientific, Singapore, 2001)CrossRefGoogle Scholar
  13. 13.
    M. Abu-Shady, T.A. Abdel-Karim, E.M. Khokha, Adv. High Energy Phys. 2018, 7356843 (2018)Google Scholar
  14. 14.
    M. Abu-Shady, T.A. Abdel-Karim, E.M. Khokha, SF J. Quantum Phys. 2, 1000017 (2018)Google Scholar
  15. 15.
    M. Abu-Shady, E.M. Khokha, Adv. High Energy Phys. 2018, 7032041 (2018)Google Scholar
  16. 16.
    M. Tanabashi et al., Phys. Rev. D 98, 030001 (2018)CrossRefADSGoogle Scholar
  17. 17.
    R. Kumar, F. Chand, Commun. Theor. Phys. 59, 528 (2013)CrossRefGoogle Scholar
  18. 18.
    A. Al-Jamel, H. Widyan, Appl. Phys. Res. 4, 94 (2013)Google Scholar
  19. 19.
    N.V. Masksimenko, S.M. Kuchin, Russ. Phys. J. 54, 57 (2011)CrossRefGoogle Scholar
  20. 20.
    R. Kumar, F. Chand, Phys. Scr. 85, 055008 (2012)CrossRefADSGoogle Scholar
  21. 21.
    S.M. Kuchin, N.V. Maksimenko, Univ. J. Phys. Appl. 7, 295 (2013)Google Scholar
  22. 22.
    A. Kumar Ray, P.C. Vinodkumar, Pramana J. Phys. 66, 958 (2006)Google Scholar
  23. 23.
    E.J. Eichten, C. Quigg, Phys. Rev. D 49, 5845 (1994)CrossRefADSGoogle Scholar
  24. 24.
    D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 67, 014027 (2003)CrossRefADSGoogle Scholar
  25. 25.
    Z. Ghalenovi, A.A. Rajabi, S. Qin, H. Rischke. arXiv:hep-ph/14034582 (2014)
  26. 26.
    C. Patrignani et al., Chin. Phys. C 40, article 100001 (2016)Google Scholar
  27. 27.
    T. Das, EJTP 13, 207 (2016)Google Scholar
  28. 28.
    W. Shi-Hal, M. Loz-cass, J.F. Jim-Ngm, A.L. River, Int. J. Quant. Chem. 107, 366–371 (2007)CrossRefADSGoogle Scholar
  29. 29.
    H. Hassan, M. Hosseinp, Eur. Phys. J. C 76, 553 (2016)CrossRefADSGoogle Scholar
  30. 30.
    M.H. Pach , R.V. Maluf, C.A.S. Almeid , R.R. Land. arXiv:1406.5114v2 (2014)
  31. 31.
    E. Meg, E. Ruiz, L.L. Salced. arXiv:1603.04642v3 (2016)
  32. 32.
    J. Beringer et al., Phys. Rev. D 86, 1 (2012)CrossRefGoogle Scholar
  33. 33.
    W.A. Yah, K.J. Oyew, J. Assoc. Arab. Univ. Basic Appl. Sci. 21, 53 (2016)Google Scholar
  34. 34.
    M.C. Onyeaj, A.N. Ikot, C.A. Onate, O. Ebomw, M.E. Udoh, J.O.A. Idiod, Eur. Phys. J. Plus. 132, 302 (2017)CrossRefGoogle Scholar
  35. 35.
    S. Roy, D.K. Choudhury, Can. J. Phys. 94, 1282 (2016)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Computer Sciences, Faculty of ScienceMenoufia UniversityMenoufiaEgypt

Personalised recommendations