Advertisement

Few-Body Systems

, 60:63 | Cite as

Confinement Induced Resonance with Weak Bare Interaction in a Quasi 3+0 Dimensional Ultracold Gas

  • Dawu Xiao
  • Ren Zhang
  • Peng ZhangEmail author
Article

Abstract

Confinement induced resonance (CIR) is a useful tool for the control of the interaction between ultracold atoms. In most cases the CIR occurs when the characteristic length \(a_\mathrm{trap}\) of the confinement is similar as the scattering length \(a_{s}\) of the two atoms in the free three-dimensional (3D) space. If there is a CIR which can occur with weak bare interaction, i.e., under the condition \(a_\mathrm{trap}\gg a_s\), then it can be realized for much more systems, even without the help of a magnetic Feshbach resonance, and would be very useful. In a previous research by Massignan and Castin (Phys Rev A 74:013616, 2006), it was shown that it is possible to realize such a CIR in a quasi-(3+0)D system, where one ultracold atom is moving in the 3D space and another one is localized by a 3D harmonic trap. In this work we carefully investigate the properties of the CIRs in this system. We show that the CIR with \(a_\mathrm{trap}\gg a_s\) can really occur, and the number of the CIRs of this type increases with the mass ratio between the moving and localized atoms. However, when \(a_\mathrm{trap}\gg a_s\) the CIR becomes extremely narrow, and thus are difficult to be controlled in realistic experiments.

Notes

Acknowledgements

This work is is supported in part by the National Key Research and Development Program of China Grant No. 2018YFA0306502 (PZ), No. 2018YFA0307601(RZ), NSFC (Grant No. 11434011(PZ), Grant No. 11674393 (PZ), Grant No. 11804268 (RZ), Grant No. 11534002), NSAF (Grant Nos. U1530401 and U1730449), as well as the Research Funds of Renmin University of China under Grant No. 16XNLQ03(PZ).

References

  1. 1.
    I. Bloch, J. Dalibard, W. Zwerge, Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)ADSGoogle Scholar
  2. 2.
    C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010)CrossRefADSGoogle Scholar
  3. 3.
    T. Köhler, K. Gáral, P. Julienne, Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311 (2006)CrossRefADSGoogle Scholar
  4. 4.
    P.O. Fedichev, Y. Kagan, G.V. Shlyapnikov, J.T.M. Walraven, Influence of nearly resonant light on the scattering length in low-temperature atomic gases. Phys. Rev. Lett. 77, 2913 (1996)CrossRefADSGoogle Scholar
  5. 5.
    J.L. Bohn, P.S. Julienne, Prospects for influencing scattering lengths with far-off-resonant light. Phys. Rev. A 56, 1486 (1997)CrossRefADSGoogle Scholar
  6. 6.
    F.K. Fatemi, K.M. Jones, P.D. Lett, Observation of optically induced Feshbach resonances in collisions of cold atoms. Phys. Rev. Lett. 85, 4462 (2000)CrossRefADSGoogle Scholar
  7. 7.
    R. Yamazaki, S. Taie, S. Sugawa, Y. Takahashi, Submicron spatial modulation of an interatomic interaction in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 050405 (2010)CrossRefADSGoogle Scholar
  8. 8.
    M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff, R. Grimm, J.H. Denschlag, Tuning the scattering length with an optically induced Feshbach resonance. Phys. Rev. Lett. 93, 123001 (2004)CrossRefADSGoogle Scholar
  9. 9.
    K. Enomoto, K. Kasa, M. Kitagawa, Y. Takahashi, Optical Feshbach resonance using the intercombination transition. Phys. Rev. Lett. 101, 203201 (2008)CrossRefADSGoogle Scholar
  10. 10.
    R. Yamazaki, S. Taie, S. Sugawa, K. Enomoto, Y. Takahashi, Observation of a p-wave optical Feshbach resonance. Phys. Rev. A 87, 010704(R) (2013)CrossRefADSGoogle Scholar
  11. 11.
    S. Blatt, T.L. Nicholson, B.J. Bloom, J.R. Williams, J.W. Thomsen, P.S. Julienne, J. Ye, Measurement of optical Feshbach resonances in an ideal gas. Phys. Rev. Lett. 107, 073202 (2011)CrossRefADSGoogle Scholar
  12. 12.
    M. Yan, B.J. DeSalvo, B. Ramachandhran, H. Pu, T. Killian, Controlling condensate collapse and expansion with an optical Feshbach resonance. Phys. Rev. Lett. 110, 123201 (2013)CrossRefADSGoogle Scholar
  13. 13.
    M. Yan, B.J. DeSalvo, Y. Huang, P. Naidon, T.C. Killian, Rabi oscillations between atomic and molecular condensates driven with coherent one-color photoassociation. Phys. Rev. Lett. 111, 150402 (2013)CrossRefADSGoogle Scholar
  14. 14.
    M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938 (1998)CrossRefADSGoogle Scholar
  15. 15.
    D.S. Petrov, G.V. Shlyapnikov, Interatomic collisions in a tightly confined Bose gas. Phys. Rev. A 64, 012706 (2001)CrossRefADSGoogle Scholar
  16. 16.
    P.O. Fedichev, M.J. Bijlsma, P. Zoller, Extended molecules and geometric scattering resonances in optical lattices. Phys. Rev. Lett. 92, 080401 (2004)CrossRefADSGoogle Scholar
  17. 17.
    P. Massignan, Y. Castin, Three-dimensional strong localization of matter waves by scattering from atoms in a lattice with a confinement-induced resonance. Phys. Rev. A 74, 013616 (2006)CrossRefADSGoogle Scholar
  18. 18.
    X. Cui, Y. Wang, F. Zhou, Resonance scattering in optical lattices and molecules: interband versus intraband effects. Phys. Rev. Lett. 104, 153201 (2010)CrossRefADSGoogle Scholar
  19. 19.
    H.P. Büchler, Microscopic derivation of Hubbard parameters for cold atomic gases. Phys. Rev. Lett. 104, 090402 (2010)CrossRefADSGoogle Scholar
  20. 20.
    S. Saeidian, V.S. Melezhik, P. Schmelcher, Multichannel atomic scattering and confinement-induced resonances in waveguides. Phys. Rev. A 77, 042721 (2008)CrossRefADSGoogle Scholar
  21. 21.
    Y. Nishida, S. Tan, Universal Fermi gases in mixed dimensions. Phys. Rev. Lett. 101, 170401 (2008)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    V.S. Melezhik, P. Schmelcher, Quantum dynamics of resonant molecule formation in waveguides. N. J. Phys. 11, 073031 (2009)CrossRefGoogle Scholar
  23. 23.
    W. Zhang, P. Zhang, Confinement-induced resonances in quasi-one-dimensional traps with transverse anisotropy. Phys. Rev. A 83, 053615 (2011)CrossRefADSGoogle Scholar
  24. 24.
    V.S. Melezhik, P. Schmelcher, Multichannel effects near confinement-induced resonances in harmonic waveguides. Phys. Rev. A 84, 042712 (2011)CrossRefADSGoogle Scholar
  25. 25.
    J.I. Kim, V.S. Melezhik, P. Schmelcher, Suppression of quantum scattering in strongly confied systems. Phys. Rev. Lett. 97, 193203 (2013)CrossRefADSGoogle Scholar
  26. 26.
    P. Zhang, L. Zhang, W. Zhang, Interatomic collisions in two-dimensional and quasi-two-dimensional confinements with spin-orbit coupling. Phys. Rev. A 86, 042707 (2012). Erratum: Phys. Rev. A 87, 039901 (2013)Google Scholar
  27. 27.
    P. Giannakeas, V.S. Melezhik, P. Schmelcher, Dipolar confinement-induced resonances of ultracold gases in waveguides. Phys. Rev. Lett. 111, 183201 (2013)CrossRefADSGoogle Scholar
  28. 28.
    Y. Cheng, R. Zhang, P. Zhang, H. Zhai, Enhancing Kondo coupling in alkaline-earth-metal atomic gases with confinement-induced resonances in mixed dimensions. Phys. Rev. A 96, 063605 (2017)CrossRefADSGoogle Scholar
  29. 29.
    R. Zhang, P. Zhang, Control of spin-exchange interaction between alkali-earth-metal atoms via confinement-induced resonances in a quasi-(1+0)-dimensional system. Phys. Rev. A 98, 043627 (2018)CrossRefADSGoogle Scholar
  30. 30.
    S. Shadmehri, V.S. Melezhik, Confinement-induced resonances in two-center problem via a pseudopotential approach. Phys. Rev. A 99, 032705 (2019)CrossRefADSGoogle Scholar
  31. 31.
    S. Sala, P. Schneider, A. Saenz, Inelastic confinement-induced resonances in low-dimensional quantum systems. Phys. Rev. Lett. 109, 073201 (2012)CrossRefADSGoogle Scholar
  32. 32.
    S. Peng, H. Hu, X. Liu, P.D. Drummond, Confinement-induced resonances in anharmonic waveguides. Phys. Rev. A 84, 043619 (2011)CrossRefADSGoogle Scholar
  33. 33.
    S. Sala, G. Zürn, T. Lompe, A.N. Wenz, S. Murmann, F. Serwane, S. Jochim, A. Saenz, Coherent molecule formation in anharmonic potentials near confinement-induced resonance. Phys. Rev. Lett. 110, 203202 (2013)CrossRefADSGoogle Scholar
  34. 34.
    S. Sala, A. Saenz, Theory of inelastic confinement-induced resonances due to the coupling of center-of-mass and relative motion. Phys. Rev. A 94, 022713 (2016)CrossRefADSGoogle Scholar
  35. 35.
    M. Troppenz, S. Sala, P.-I. Schneider, A. Saenz, Inelastic confinement-induced resonances in quantum dots. arXiv:1509.01159 (2015)
  36. 36.
    S. Srinivasan, Theoretical models for ultracold atom-ion collisions in confined geometries. Ph.D. Thesis, Université Rennes (2015)Google Scholar
  37. 37.
    V.S. Melezhik, A. Negretti, Confinement-induced resonances in ultracold atom-ion systems. Phys. Rev. A 94, 022704 (2016)CrossRefADSGoogle Scholar
  38. 38.
    V.S. Melezhik, Z. Idziaszek, A. Negretti, Impact of ion motion on atom-ion confinement-induced resonances in hybrid traps. arXiv: 1908.01151 (2019)
  39. 39.
    E. Haller, M.J. Mark, R. Hart, J.G. Danzl, L. Reichsollner, V. Melezhik, P. Schmelcher, H.-C. Nägerl, Confinement-induced resonances in low-dimensional quantum systems. Phys. Rev. Lett. 104, 153203 (2010)CrossRefADSGoogle Scholar
  40. 40.
    G. Lamporesi, J. Catani, G. Barontini, Y. Nishida, M. Inguscio, F. Minardi, Scattering in mixed dimensions with ultracold gases. Phys. Rev. Lett. 104, 153202 (2010)CrossRefADSGoogle Scholar
  41. 41.
    L. Riegger, N. Darkwah Oppong, M. Höfer, D.R. Fernandes, I. Bloch, S. Fölling, Localized magnetic moments with tunable spin exchange in a gas of ultracold fermions. Phys. Rev. Lett. 120, 143601 (2018)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Computational Science Research CenterBeijingChina
  2. 2.School of ScienceXi’an Jiaotong UniversityXi’anChina
  3. 3.Department of PhysicsRenmin University of ChinaBeijingChina

Personalised recommendations